No Arabic abstract
The available experimental information on the Range-Energy relation for protons stopped in hydrogen gas is summarized in the SRIM software package. The estimated precision of this data is several percents. Here we describe a possibility to measure this relation with 0.1$%$ precision in the course of an electron-proton elastic scattering experiment to be performed in the 720 MeV electron beam at the Mainz Microtron (MAMI). This experiment, aimed at precision measurement of the proton charge radius, exploits a large hydrogen active target to detect the recoiled protons and a forward tracker to detect the scattered electrons. The angles of the scattered electrons are measured with $2cdot10^{-4}$ absolute precision. Also, the electron beam momentum is known at MAMI with $2cdot10^{-4}$ absolute precision. This gives a possibility to determine with 0.1$%$ absolute precision the four-momentum transfer $Q^2$ which, in its turn, is a direct measure of the recoiled proton energy $T_{p}$: $Q^2 = 2M_{p}T_{p}$, where M$_{p}$ is the proton mass. From this point of view, this experimental setup can be considered as a source of protons with well defined energies inside an active target, which is a specially designed hydrogen high-pressure Time Projection Chamber (TPC). The design of the TPC allows to measure with high precision the energy of the protons corresponding to some selected values of the proton range. In this way, the Range-Energy relation can be established for the proton energies from 1 MeV to 9.3 MeV with 0.1$%$ absolute precision, the maximal energy being limited by the size of the TPC and by the hydrogen gas pressure.
The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium $beta$-decay endpoint region with a sensitivity on $m_ u$ of 0.2$,$eV/c$^2$ (90% CL). For this purpose, the $beta$-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6$,$keV. A dominant systematic effect of the response of the experimental setup is the energy loss of $beta$-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T$_2$ gas mixture at 30$,$K, as used in the first KATRIN neutrino mass analyses, as well as a D$_2$ gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of $sigma(m_ u^2)<10^{-2},mathrm{eV}^2$ [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level.
Absolute normalisation of the LHC measurements with a precision of O(1%) is desirable but beyond the reach of the present LHC detectors. This series of papers proposes and evaluates a measurement method capable to achieve such a precision target. In our earlier paper we have selected the phase-space region where the lepton pair production cross section in pp collisions at the LHC can be controlled with < 1 % precision and is large enough to reach a comparable statistical accuracy of the absolute luminosity measurement on the day-by-day basis. In the present one the performance requirements for a dedicated detector, indispensable to efficiently select events in the proposed phase-space region, are discussed.
The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future reactor neutrino experiments, and to provide a benchmark measurement to test nuclear databases. A spherical acrylic vessel containing 2.8 ton gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon Photomultipliers (SiPMs) of >50% photon detection efficiency with almost full coverage. The photoelectron yield is about 4500 per MeV, an order higher than any existing large-scale liquid scintillator detectors. The detector operates at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The detector will measure about 2000 reactor antineutrinos per day, and is designed to be well shielded from cosmogenic backgrounds and ambient radioactivities to have about 10% background-to-signal ratio. The experiment is expected to start operation in 2022.
This paper describes in detail the acrylic target vessels used to encapsulate the target and gamma catcher regions in the Daya Bay experiments first pair of antineutrino detectors. We give an overview of the design, fabrication, shipping, and installation of the acrylic target vessels and their liquid overflow tanks. The acrylic quality assurance program and vessel characterization, which measures all geometric, optical, and material properties relevant to { u}e detection at Daya Bay are summarized. This paper is the technical reference for the Daya Bay acrylic vessels and can provide guidance in the design and use of acrylic components in future neutrino or dark matter experiments.
DAMPE is a space-based mission designed as a high energy particle detector measuring cosmic-rays and $gamma-$rays which was successfully launched on Dec.17, 2015. The BGO electromagnetic calorimeter is one of the key sub-detectors of DAMPE for energy measurement of electromagnetic showers produced by $e^{pm}/{gamma}$. Due to energy loss in dead material and energy leakage outside the calorimeter, the deposited energy in BGO underestimates the primary energy of incident $e^{pm}/{gamma}$. In this paper, based on detailed MC simulations, a parameterized energy correction method using the lateral and longitudinal information of electromagnetic showers has been studied and verified with data of electron beam test at CERN. The measurements of energy linearity and resolution are significantly improved by applying this correction method for electromagnetic showers.