Do you want to publish a course? Click here

Future Physics Programme of BESIII

310   0   0.0 ( 0 )
 Added by Xiao-Rui Lyu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

There has recently been a dramatic renewal of interest in the subjects of hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like $XYZ$ states at BESIII and $B$ factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related $X(1835)$ meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII over the remaining lifetime of BEPCII operation. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.



rate research

Read More

103 - Chang-Zheng Yuan 2020
The standard model of particle physics is a well-tested theoretical framework, but there are still a number of issues that deserve further experimental and theoretical investigation. For quark physics, such questions include: the nature of quark confinement, the mechanism that connects the quarks and gluons of the standard model theory to the strongly interacting particles; and the weak decays of quarks, which may provide insights into new physics mechanisms responsible for the matter-antimatter asymmetry of the Universe. These issues are addressed by the Beijing Spectrometer III (BESIII) experiment at the Beijing Electron-Positron Collider II (BEPCII) storage ring, which for the past decade has been studying particles produced in electron-positron collisions in the tau-charm energy-threshold region, and has by now accumulated the worlds largest datasets that enables searches for nonstandard hadrons, weak decays of the charmed particles, and new physics phenomena beyond the standard model. Here, we review the contributions of BESIII to such studies and discuss future prospects for BESIII and other experiments.
143 - A. J. Bevan 2010
SuperB is a proposed high luminosity Super Flavour Factory capable of accumulating 75/ab of data at the Y(4S) as well as at other center of mass energies. These proceedings summarise highlights of the SuperB physics programme, and in particular there is emphasis on the unique aspects of SuperB over other planned or existing experiments.
155 - Felix Sefkow 2014
The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).
With the help of the largest data samples of $J/psi$ and $psi(2S)$ events ever produced in $e^+e^-$ annihilations, the three singlet charmonium states, $eta_c(1S)$, $eta_c(2S)$ and $h_c(1P)$, have been extensively studied at the BESIII experiment. In this review, a survey on the most recent results, including a series of precision measurements and observations of their new decay modes, is presented, which indicates the further investigations on their decays are needed to understand their decay mechanisms and have precision tests of the theoretical models. At present, about eight times larger data samples of 10 billion $J/psi$ events and 3 billion $psi(3686)$ events were collected with the BESIII detector, and thus the prospects for the study of these three charmonium states is discussed extensively.
311 - Zhiqing Liu 2015
With the ability to run above 4~GeV, the BESIII experiment located in the Beijing Electron Positron Collider (BEPCII), has becoming a pioneer in searching and studying charmoniumlike states ($XYZ$ particles). In 2013, BESIII Collaboration discovered a charged charmoniumlike state $Z_c(3900)$, which is confirmed immediately experimentally, and provides the best candidate for a four quark state by now. Continuous studies by BESIII Collaboration show new decay behavior of $Z_c(3900)$, and there are possible partner particle $Z_c(4020)/Z_c(4025)$ existing. By scanning above 4~GeV, BESIII also reveals the potential connection between $Y(4260)$ and $X(3872)$ for the first time, which may help us understand $XYZ$ particles in a new sight.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا