Do you want to publish a course? Click here

Calculating the static gravitational two-body potential to fifth post-Newtonian order with Feynman diagrams

122   0   0.0 ( 0 )
 Added by Christian Sturm
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the first-time calculation of the static gravitational two-body potential up to fifth post-Newtonian(PN) order. The results are achieved through a manifest factorization property of the odd PN diagrams. The factorization property is illustrated also at first and third PN order.

rate research

Read More

We determine the gravitational interaction between two compact bodies up to the sixth power in Newtons constant GN, in the static limit. This result is achieved within the effective field theory approach to General Relativity, and exploits a manifest factorization property of static diagrams which allows to derive static post Newtonian (PN) contributions of (2n+1)-order in terms of lower order ones. We recompute in this fashion the 1PN and 3PN static potential, and present the novel 5PN contribution.
Working within the post-Newtonian (PN) approximation to General Relativity, we use the effective field theory (EFT) framework to study the conservative dynamics of the two-body motion at fourth PN order, at fifth order in the Newton constant. This is one of the missing pieces preventing the computation of the full Lagrangian at fourth PN order using EFT methods. We exploit the analogy between diagrams in the EFT gravitational theory and 2-point functions in massless gauge theory, to address the calculation of 4-loop amplitudes by means of standard multi-loop diagrammatic techniques. For those terms which can be directly compared, our result confirms the findings of previous studies, performed using different methods.
63 - J. Blumlein , A. Maier , 2019
We compute the static contribution to the gravitational interaction potential of two point masses in the velocity-independent five-loop (and 5th post-Newtonian) approximation to the harmonic coordinates effective action in a direct calculation. The computation is performed using effective field methods based on Feynman diagrams in momentum-space in $d = 3 - 2varepsilon$ space dimensions. We also reproduce the previous results including the 4th post-Newtonian order.
The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.
Using effective field theory techniques we calculate the source multipole moments needed to obtain the spin contributions to the power radiated in gravitational waves from inspiralling compact binaries to third Post-Newtonian order (3PN). The multipoles depend linearly and quadratically on the spins and include both spin(1)spin(2) and spin(1)spin(1) components. The results in this paper provide the last missing ingredient required to determine the phase evolution to 3PN including all spin effects which we will report in a separate paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا