No Arabic abstract
Working within the post-Newtonian (PN) approximation to General Relativity, we use the effective field theory (EFT) framework to study the conservative dynamics of the two-body motion at fourth PN order, at fifth order in the Newton constant. This is one of the missing pieces preventing the computation of the full Lagrangian at fourth PN order using EFT methods. We exploit the analogy between diagrams in the EFT gravitational theory and 2-point functions in massless gauge theory, to address the calculation of 4-loop amplitudes by means of standard multi-loop diagrammatic techniques. For those terms which can be directly compared, our result confirms the findings of previous studies, performed using different methods.
We determine the gravitational interaction between two compact bodies up to the sixth power in Newtons constant GN, in the static limit. This result is achieved within the effective field theory approach to General Relativity, and exploits a manifest factorization property of static diagrams which allows to derive static post Newtonian (PN) contributions of (2n+1)-order in terms of lower order ones. We recompute in this fashion the 1PN and 3PN static potential, and present the novel 5PN contribution.
We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein, to compute the interaction Lagrangian of a binary system at the second Post-Newtonian order. Throughout the calculation, we use a metric parametrization based on a temporal Kaluza-Klein decomposition and test the claim by Kol and Smolkin that this parametrization provides important calculational advantages. We demonstrate how to use the effective field theory method efficiently in precision calculations, and we reproduce known results for the second Post-Newtonian order equations of motion in harmonic gauge in a straightforward manner.
We discuss the first-time calculation of the static gravitational two-body potential up to fifth post-Newtonian(PN) order. The results are achieved through a manifest factorization property of the odd PN diagrams. The factorization property is illustrated also at first and third PN order.
We study the gravitational radiation emitted during the scattering of two spinless bodies in the post-Minkowskian Effective Field Theory approach. We derive the conserved stress-energy tensor linearly coupled to gravity and the classical probability amplitude of graviton emission at leading and next-to-leading order in the Newtons constant $G$. The amplitude can be expressed in compact form as one-dimensional integrals over a Feynman parameter involving Bessel functions. We use it to recover the leading-order radiated angular momentum expression. Upon expanding it in the relative velocity between the two bodies $v$, we compute the total four-momentum radiated into gravitational waves at leading-order in $G$ and up to an order $v^8$, finding agreement with what was recently computed using scattering amplitude methods. Our results also allow us to investigate the zero frequency limit of the emitted energy spectrum.
We present the contribution from potential interactions to the dynamics of non-spinning binaries to fourth Post-Minkowskian (4PM) order. This is achieved by computing the scattering angle to ${cal O}(G^4)$ using the effective field theory approach and deriving the bound radial action through analytic continuation. We reconstruct the Hamiltonian and center-of-mass momentum in an isotropic gauge. The (three-loop) integrals involved in our calculation are computed via differential equations, including a sector yielding elliptic integrals. As a prelude of radiation-reaction effects, using the universal link between potential and tail terms, we also report: 1) The instantaneous energy flux at ${cal O}(G^3)$; 2) The contribution to the 4PM unbound/bound radial action(s) depending on logarithms of the binding energy; 3) The (scheme-independent) logarithmic contribution to the 4PM non-local tail Hamiltonian for circular orbits. Our results in the potential region are in agreement with the recent derivation from scattering amplitudes. We also find perfect agreement in the overlap with the state-of-the-art in Post-Newtonian theory.