Do you want to publish a course? Click here

Universality at work -- the local sine-Gordon model, lattice fermions, and quantum circuits

97   0   0.0 ( 0 )
 Added by Volker Meden
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the intriguing many-body physics resulting out of the interplay of a single, local impurity and the two-particle interaction in a one-dimensional Fermi system. Even if the underlying homogeneous correlated system is taken to be metallic, this interplay leads to an emergent quantum phase transition between metallic and insulating states. We show that the zero temperature critical point and the universal low-energy physics associated to it, is realized in two different models, the field theoretical local sine-Gordon model and spinless fermions on a lattice with nearest-neighbor hopping and two-particle interaction, as well as in an experimental setup consisting of a highly tunable quantum circuit. Despite the different high-energy physics of the three systems the universal low-energy scaling curves of the conductance as a function of temperature agree up to a very high precision without any free parameter. Overall this provides a convincing example of how emergent universality in complex systems originating from a common underlying quantum critical point establishes a bridge between different fields of physics. In our case between field theory, quantum many-body theory of correlated Fermi systems, and experimental circuit quantum electrodynamics.



rate research

Read More

The Sine-Gordon - equivalently, the massive Thirring - Hamiltonian is ubiquitous in low-dimensional physics, with applications that range from cold atom and strongly correlated systems to quantum impurities. We study here its non-equilibrium dynamics using the quantum quench protocol - following the system as it evolves under the Sine-Gordon Hamiltonian from initial Mott type states with large potential barriers. By means of the Bethe Ansatz we calculate exactly the Loschmidt amplitude, the fidelity and work distribution characterizing these quenches for different values of the interaction strength. Some universal features are noted as well as an interesting duality relating quenches in different parameter regimes of the model.
62 - A. Bacsi , C. P. Moca , G. Zarand 2021
We study the dissipative dynamics of one-dimensional fermions, described in terms of the sine-Gordon model in its massive boson or semi-classical limit, while keeping track of forward scattering processes. The system is prepared in the gapped ground state, and then coupled to environment through local currents within the Lindblad formalism. The heating dynamics of the system is followed using bosonization. The single particle density matrix exhibits correlations between the left and right moving particles. While the density matrix of right movers and left movers is translationally invariant, the left-right sector is not, corresponding to a translational symmetry breaking charge density wave state. Asymptotically, the single particle density matrix decays exponentially with exponent proportional to $-gamma t|x|Delta^2$ where $gamma$ and $Delta$ are the dissipative coupling and the gap, respectively. The charge density wave order parameter decays exponentially in time with an interaction independent decay rate. The second Renyi entropy grows linearly with time and is essentially insensitive to the presence of the gap.
The material copper pyrimidine dinitrate (Cu-PM) is a quasi-one-dimensional spin system described by the spin-1/2 XXZ Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions. Based on numerical results obtained by the density-matrix renormalization group, exact diagonalization, and accompanying electron spin resonance (ESR) experiments we revisit the spin dynamics of this compound in an applied magnetic field. Our calculations for momentum and frequency-resolved dynamical quantities give direct access to the intensity of the elementary excitations at both zero and finite temperature. This allows us to study the system beyond the low-energy description by the quantum sine-Gordon model. We find a deviation from the Lorentz invariant dispersion for the single-soliton resonance. Furthermore, our calculations only confirm the presence of the strongest boundary bound state previously derived from a boundary sine-Gordon field theory, while composite boundary-bulk excitations have too low intensities to be observable. Upon increasing the temperature, we find a temperature-induced crossover of the soliton and the emergence of new features, such as interbreather transitions. The latter observation is confirmed by our ESR experiments on Cu-PM over a wide range of the applied field.
149 - D. X. Horvath , G. Takacs 2017
We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has a general applicability in free boson TCSA. The numerical results are used to confirm the validity of a previously proposed analytical Ansatz for the initial state in the sinh-Gordon quench.
85 - Igor N.Karnaukhov 2021
Applying a unified approach, we study integer quantum Hall effect (IQHE) and fractional quantum Hall effect (FQHE) in the Hofstadter model with short range interaction between fermions. An effective field, that takes into account the interaction, is determined by both the amplitude and phase. Its amplitude is proportional to the interaction strength, the phase corresponds to the minimum energy. In fact the problem is reduced to the Harper equation with two different scales: the first is a magnetic scale (cell size corresponding to a unit quantum magnetic flux), the second scale (determines the inhomogeneity of the effective field) forms the steady fine structure of the Hofstadter spectrum and leads to the realization of fractional quantum Hall states. In a sample of finite sizes with open boundary conditions, the fine structure of the Hofstadter spectrum also includes the fine structure of the edge chiral modes. The subbands in a fine structure of the Hofstadter band (HB) are separated extremely small quasigaps. The Chern number of a topological HB is conserved during the formation of its fine structure. Edge modes are formed into HB, they connect the nearest-neighbor subbands and determine the fractional conductance for the fractional filling at the Fermi energies corresponding to these quasigaps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا