Do you want to publish a course? Click here

Loschmidt Amplitude and Work Distribution in Quenches of the Sine-Gordon Model

97   0   0.0 ( 0 )
 Added by Colin Rylands
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Sine-Gordon - equivalently, the massive Thirring - Hamiltonian is ubiquitous in low-dimensional physics, with applications that range from cold atom and strongly correlated systems to quantum impurities. We study here its non-equilibrium dynamics using the quantum quench protocol - following the system as it evolves under the Sine-Gordon Hamiltonian from initial Mott type states with large potential barriers. By means of the Bethe Ansatz we calculate exactly the Loschmidt amplitude, the fidelity and work distribution characterizing these quenches for different values of the interaction strength. Some universal features are noted as well as an interesting duality relating quenches in different parameter regimes of the model.



rate research

Read More

We review the intriguing many-body physics resulting out of the interplay of a single, local impurity and the two-particle interaction in a one-dimensional Fermi system. Even if the underlying homogeneous correlated system is taken to be metallic, this interplay leads to an emergent quantum phase transition between metallic and insulating states. We show that the zero temperature critical point and the universal low-energy physics associated to it, is realized in two different models, the field theoretical local sine-Gordon model and spinless fermions on a lattice with nearest-neighbor hopping and two-particle interaction, as well as in an experimental setup consisting of a highly tunable quantum circuit. Despite the different high-energy physics of the three systems the universal low-energy scaling curves of the conductance as a function of temperature agree up to a very high precision without any free parameter. Overall this provides a convincing example of how emergent universality in complex systems originating from a common underlying quantum critical point establishes a bridge between different fields of physics. In our case between field theory, quantum many-body theory of correlated Fermi systems, and experimental circuit quantum electrodynamics.
149 - D. X. Horvath , G. Takacs 2017
We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has a general applicability in free boson TCSA. The numerical results are used to confirm the validity of a previously proposed analytical Ansatz for the initial state in the sinh-Gordon quench.
62 - A. Bacsi , C. P. Moca , G. Zarand 2021
We study the dissipative dynamics of one-dimensional fermions, described in terms of the sine-Gordon model in its massive boson or semi-classical limit, while keeping track of forward scattering processes. The system is prepared in the gapped ground state, and then coupled to environment through local currents within the Lindblad formalism. The heating dynamics of the system is followed using bosonization. The single particle density matrix exhibits correlations between the left and right moving particles. While the density matrix of right movers and left movers is translationally invariant, the left-right sector is not, corresponding to a translational symmetry breaking charge density wave state. Asymptotically, the single particle density matrix decays exponentially with exponent proportional to $-gamma t|x|Delta^2$ where $gamma$ and $Delta$ are the dissipative coupling and the gap, respectively. The charge density wave order parameter decays exponentially in time with an interaction independent decay rate. The second Renyi entropy grows linearly with time and is essentially insensitive to the presence of the gap.
Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential $V(x)$, which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions $x_{i}$. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential $U_{opt}$ that yields a maximal average soliton velocity. $U_{opt}$ essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system.
We introduce and study the properties of a periodic model interpolating between the sine-- and the sinh--Gordon theories in $1+1$ dimensions. This model shows the peculiarities, due to the preservation of the functional form of their potential across RG flows, of the two limiting cases: the sine-Gordon, not having conventional order/magnetization at finite temperature, but exhibiting Berezinskii-Kosterlitz-Thouless (BKT) transition; and the sinh-Gordon, not having a phase transition, but being integrable. The considered interpolation, which we term as {em sn-Gordon} model, is performed with potentials written in terms of Jacobi functions. The critical properties of the sn-Gordon theory are discussed by a renormalization-group approach. The critical points, except the sinh-Gordon one, are found to be of BKT type. Explicit expressions for the critical coupling as a function of the elliptic modulus are given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا