Do you want to publish a course? Click here

Characterization of exact one-query quantum algorithms

126   0   0.0 ( 0 )
 Added by Zekun Ye
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum query models is one of the most important models in quantum computing. Several well-known quantum algorithms are captured by this model, including the Deutsch-Jozsa algorithm, the Simon algorithm, the Grover algorithm and others. In this paper, we characterize the computational power of exact one-query quantum algorithms. It is proved that a total Boolean function $f:{0,1}^n rightarrow {0,1}$ can be exactly computed by a one-query quantum algorithm if and only if $f(x)=x_{i_1}$ or ${x_{i_1} oplus x_{i_2} }$ (up to isomorphism). Note that unlike most work in the literature based on the polynomial method, our proof does not resort to any knowledge about the polynomial degree of $f$.



rate research

Read More

170 - Zekun Ye , Lvzhou Li 2020
The query model (or black-box model) has attracted much attention from the communities of both classical and quantum computing. Usually, quantum advantages are revealed by presenting a quantum algorithm that has a better query complexity than its classical counterpart. For example, the well-known quantum algorithms including Deutsch-Jozsa algorithm, Simon algorithm and Grover algorithm all show a considerable advantage of quantum computing from the viewpoint of query complexity. Recently we have considered in (Phys. Rev. A. {bf 101}, 02232 (2020)) the problem: what functions can be computed by an exact one-query quantum algorithm? This problem has been addressed for total Boolean functions but still open for partial Boolean functions. Thus, in this paper we continue to characterize the computational power of exact one-query quantum algorithms for partial Boolean functions by giving several necessary and sufficient conditions. By these conditions, we construct some new functions that can be computed exactly by one-query quantum algorithms but have essential difference from the already known ones. Note that before our work, the known functions that can be computed by exact one-query quantum algorithms are all symmetric functions, whereas the ones constructed in this papers are generally asymmetric.
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithms as much as possible. We show tight bounds for a number of problems, specifically Theta((n/p)^{2/3}) p-parallel queries for element distinctness and Theta((n/p)^{k/(k+1)} for k-sum. Our upper bounds are obtained by parallelized quantum walk algorithms, and our lower bounds are based on a relatively small modification of the adversary lower bound method, combined with recent results of Belovs et al. on learning graphs. We also prove some general bounds, in particular that quantum and classical p-parallel complexity are polynomially related for all total functions f when p is small compared to fs block sensitivity.
In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly $k$ or $l$ of the $n$ input bits given by an oracle are 1. We find an optimal algorithm (for some cases), and a nontrivial general lower and upper bound on the minimum number of queries to the black box.
Quantum span program algorithms for function evaluation commonly have reduced query complexity when promised that the input has a certain structure. We design a modified span program algorithm to show these speed-ups persist even without having a promise ahead of time, and we extend this approach to the more general problem of state conversion. For example, there is a span program algorithm that decides whether two vertices are connected in an $n$-vertex graph with $O(n^{3/2})$ queries in general, but with $O(sqrt{k}n)$ queries if promised that, if there is a path, there is one with at most $k$ edges. Our algorithm uses $tilde{O}(sqrt{k}n)$ queries to solve this problem if there is a path with at most $k$ edges, without knowing $k$ ahead of time.
We show how to efficiently simulate continuous-time quantum query algorithms that run in time T in a manner that preserves the query complexity (within a polylogarithmic factor) while also incurring a small overhead cost in the total number of gates between queries. By small overhead, we mean T within a factor that is polylogarithmic in terms of T and a cost measure that reflects the cost of computing the driving Hamiltonian. This permits any continuous-time quantum algorithm based on an efficiently computable driving Hamiltonian to be converted into a gate-efficient algorithm with similar running time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا