Do you want to publish a course? Click here

Gate-efficient discrete simulations of continuous-time quantum query algorithms

121   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show how to efficiently simulate continuous-time quantum query algorithms that run in time T in a manner that preserves the query complexity (within a polylogarithmic factor) while also incurring a small overhead cost in the total number of gates between queries. By small overhead, we mean T within a factor that is polylogarithmic in terms of T and a cost measure that reflects the cost of computing the driving Hamiltonian. This permits any continuous-time quantum algorithm based on an efficiently computable driving Hamiltonian to be converted into a gate-efficient algorithm with similar running time.



rate research

Read More

Variational quantum algorithms are believed to be promising for solving computationally hard problems and are often comprised of repeated layers of quantum gates. An example thereof is the quantum approximate optimization algorithm (QAOA), an approach to solve combinatorial optimization problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational power from QAOA critically relies on the mitigation of errors during the execution of the algorithm, which for coherence-limited operations is achievable by reducing the gate count. Here, we demonstrate an improvement of up to a factor of 3 in algorithmic performance as measured by the success probability, by implementing a continuous hardware-efficient gate set using superconducting quantum circuits. This gate set allows us to perform the phase separation step in QAOA with a single physical gate for each pair of qubits instead of decomposing it into two C$Z$-gates and single-qubit gates. With this reduced number of physical gates, which scales with the number of layers employed in the algorithm, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances mapped onto three and seven qubits, using up to a total of 399 operations and up to 9 layers. Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithms as much as possible. We show tight bounds for a number of problems, specifically Theta((n/p)^{2/3}) p-parallel queries for element distinctness and Theta((n/p)^{k/(k+1)} for k-sum. Our upper bounds are obtained by parallelized quantum walk algorithms, and our lower bounds are based on a relatively small modification of the adversary lower bound method, combined with recent results of Belovs et al. on learning graphs. We also prove some general bounds, in particular that quantum and classical p-parallel complexity are polynomially related for all total functions f when p is small compared to fs block sensitivity.
The quantum query models is one of the most important models in quantum computing. Several well-known quantum algorithms are captured by this model, including the Deutsch-Jozsa algorithm, the Simon algorithm, the Grover algorithm and others. In this paper, we characterize the computational power of exact one-query quantum algorithms. It is proved that a total Boolean function $f:{0,1}^n rightarrow {0,1}$ can be exactly computed by a one-query quantum algorithm if and only if $f(x)=x_{i_1}$ or ${x_{i_1} oplus x_{i_2} }$ (up to isomorphism). Note that unlike most work in the literature based on the polynomial method, our proof does not resort to any knowledge about the polynomial degree of $f$.
182 - Andrew M. Childs 2009
Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.
We present an efficient approach to continuous-time quantum error correction that extends the low-dimensional quantum filtering methodology developed by van Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery operations in the form of real-time quantum feedback. We expect this paradigm to be useful for systems in which error recovery operations cannot be applied instantaneously. While we could not find an exact low-dimensional filter that combined both continuous syndrome measurement and a feedback Hamiltonian appropriate for error recovery, we developed an approximate reduced-dimensional model to do so. Simulations of the five-qubit code subjected to the symmetric depolarizing channel suggests that error correction based on our approximate filter performs essentially identically to correction based on an exact quantum dynamical model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا