Do you want to publish a course? Click here

Emergence of small-scale magnetic flux in the quiet Sun

120   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the evolution of a small-scale emerging flux region (EFR) in the quiet Sun, from its emergence to its decay. We track processes and phenomena across all atmospheric layers, explore their interrelations and compare our findings with recent numerical modelling studies. We used imaging, spectral and spectropolarimetric observations from space-borne and ground-based instruments. The EFR appears next to the chromospheric network and shows all characteristics predicted by numerical simulations. The total magnetic flux of the EFR exhibits distinct evolutionary phases, namely an initial subtle increase, a fast increase and expansion of the region area, a more gradual increase, and a slow decay. During the initial stages, bright points coalesce, forming clusters of positive- and negative-polarity in a largely bipolar configuration. During the fast expansion, flux tubes make their way to the chromosphere, producing pressure-driven absorption fronts, visible as blueshifted chromospheric features. The connectivity of the quiet-Sun network gradually changes and part of the existing network forms new connections with the EFR. A few minutes after the bipole has reached its maximum magnetic flux, it brightens in soft X-rays forming a coronal bright point, exhibiting episodic brightenings on top of a long smooth increase. These coronal brightenings are also associated with surge-like chromospheric features, which can be attributed to reconnection with adjacent small-scale magnetic fields and the ambient magnetic field. The emergence of magnetic flux even at the smallest scales can be the driver of a series of energetic phenomena visible at various atmospheric heights and temperature regimes. Multi-wavelength observations reveal a wealth of mechanisms which produce diverse observable effects during the different evolutionary stages of these small-scale structures.



rate research

Read More

Small bipolar magnetic features are observed to appear in the interior of individual granules in the quiet Sun, signaling the emergence of tiny magnetic loops from the solar interior. We study the origin of those features as part of the magnetoconvection process in the top layers of the convection zone. Two quiet-Sun magnetoconvection models, calculated with the radiation-magnetohydrodynamic (MHD) Bifrost code and with domain stretching from the top layers of the convection zone to the corona, are analyzed. Using 3D visualization as well as a posteriori spectral synthesis of Stokes parameters, we detect the repeated emergence of small magnetic elements in the interior of granules, as in the observations. Additionally, we identify the formation of organized horizontal magnetic sheets covering whole granules. Our approach is twofold, calculating statistical properties of the system, like joint probability density functions (JPDFs), and pursuing individual events via visualization tools. We conclude that the small magnetic loops surfacing within individual granules in the observations may originate from sites at or near the downflows in the granular and mesogranular levels, probably in the first 1 or 1.5 Mm below the surface. We also document the creation of granule-covering magnetic sheet-like structures through the sideways expansion of a small subphotospheric magnetic concentration picked up, and pulled out of the interior, by a nascent granule. The sheet-like structures we found in the models may match the recent observations of Centeno et al. (2017).
We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the 1-m SST, to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the photosphere and chromosphere. Blueshifts of about 2 km/s are seen near the entrance of a granular light bridge on the limbward side of the spot. They lie next to a strongly redshifted patch that appeared 6 mins earlier. Both patches are seen for 25 mins until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of it. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength and inclination, with the field becoming nearly horizontal. In the redshifted patch, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca filtergrams over these features, 17 mins after they emerge in the photosphere. The brightening is due to emission in the blue wing of the Ca line, close to its knee. Non-LTE
85 - R. Brajsa , I. Skokic , D. Sudar 2021
Aims. The main aim of the present analysis is to decipher (i) the small-scale bright features in solar images of the quiet Sun and active regions obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and (ii) the ALMA correspondence of various known chromospheric structures visible in the H-alpha images of the Sun. Methods. Small-scale ALMA bright features in the quiet Sun region were analyzed using single-dish ALMA observations (1.21 mm, 248 GHz) and in an active region using interferometric ALMA measurements (3 mm, 100 GHz). With the single-dish observations, a full-disk solar image is produced, while interferometric measurements enable the high-resolution reconstruction of part of the solar disk, including the active region. The selected quiet Sun and active regions are compared with the H-alpha (core and wing sum), EUV, and soft X-ray images and with the magnetograms. Results. In the quiet Sun region, enhanced emission seen in the ALMA is almost always associated with a strong line-of-sight (LOS) magnetic field. Four coronal bright points were identified, while other small-scale ALMA bright features are most likely associated with magnetic network elements and plages. In the active region, in 14 small-scale ALMA bright features randomly selected and compared with other images, we found five good candidates for coronal bright points, two for plages, and five for fibrils. Two unclear cases remain: a fibril or a jet, and a coronal bright point or a plage. A comparison of the H-alpha core image and the 3 mm ALMA image of the analyzed active region showed that the sunspot appears dark in both images (with a local ALMA radiation enhancement in sunspot umbra), the four plage areas are bright in both images and dark small H-alpha filaments are clearly recognized as dark structures of the same shape also in ALMA.
We detected 2.8 bright points (BPs) per Mm$^2$ in the Quiet Sun (QS) with the New Solar Telescope (NST) at Big Bear Solar Observatory; using the TiO 705.68 nm spectral line, at an angular resolution ~ 0.1 to obtain 30 min data sequence. Some BPs formed knots that were stable in time and influenced the properties of the granulation pattern around them. The observed granulation pattern within ~ 3 of knots presents smaller granules than those observed in a normal granulation pattern; i.e., around the knots a suppressed convection is detected. Observed BPs covered ~ 5% of the solar surface and were not homogeneously distributed. BPs had an average size of 0.22, they were detectable for 4.28 min in average, and had an averaged contrast of 0.1% in the deep red TiO spectral line.
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops which reach into the chromosphere or higher have one foot point in relatively strong magnetic field regions in the photosphere. $91%$ of the magnetic energy in the mid chromosphere (at a height of 1 Mm) is in field lines, whose stronger foot point has a strength of more than 300 G, i.e. above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker foot point has a strength $B < 300$ G and is located in the internetwork. Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the internetwork fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا