Do you want to publish a course? Click here

$C_6$ coefficients for interacting Rydberg atoms and alkali-metal dimers

155   0   0.0 ( 0 )
 Added by Felipe Herrera
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the van der Waals interaction between Rydberg alkali-metal atoms with fine structure ($n^2L_j$; $Lleq 2$) and heteronuclear alkali-metal dimers in the ground rovibrational state ($X^1Sigma^+$; $v=0$, $J=0$). We compute the associated $C_6$ dispersion coefficients of atom-molecule pairs involving $^{133}$Cs and $^{85}$Rb atoms interacting with KRb, LiCs, LiRb, and RbCs molecules. The obtained dispersion coefficients can be accurately fitted to a state-dependent polynomial $O(n^7)$ over the range of principal quantum numbers $40leq nleq 150$. For all atom-molecule pairs considered, Rydberg states $n^2S_j$ and $n^2P_j$ result in attractive $1/R^6$ potentials. In contrast, $n^2D_j$ states can give rise to repulsive potentials for specific atom-molecule pairs. The interaction energy at the LeRoy distance approximately scales as $n^{-5}$ for $n>40$. For intermediate values of $nlesssim40$, both repulsive and attractive interaction energies in the order of $ 10-100 ,mu$K can be achieved with specific atomic and molecular species. The accuracy of the reported $C_6$ coefficients is limited by the quality of the atomic quantum defects, with relative errors $Delta C_6/C_6$ estimated to be no greater than 1% on average.

rate research

Read More

The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.
We present a joint experimental and theoretical study of spin coherence properties of 39K, 85Rb, 87Rb, and 133Cs atoms trapped in a solid parahydrogen matrix. We use optical pumping to prepare the spin states of the implanted atoms and circular dichroism to measure their spin states. Optical pumping signals show order-of-magnitude differences depending on both matrix growth conditions and atomic species. We measure the ensemble transverse relaxation times (T2*) of the spin states of the alkali-metal atoms. Different alkali species exhibit dramatically different T2* times, ranging from sub-microsecond coherence times for high mF states of 87Rb, to ~100 microseconds for 39K. These are the longest ensemble T2* times reported for an electron spin system at high densities (n > 10^16 cm^-3). To interpret these observations, we develop a theory of inhomogenous broadening of hyperfine transitions of ^2S atoms in weakly-interacting solid matrices. Our calculated ensemble transverse relaxation times agree well with experiment, and suggest ways to longer coherence times in future work.
We explore the properties of 3-atom complexes of alkali-metal diatomic molecules with alkali-metal atoms, which may be formed in ultracold collisions. We estimate the densities of vibrational states at the energy of atom-diatom collisions, and find values ranging from 2.2 to 350~K$^{-1}$. However, this density does not account for electronic near-degeneracy or electron and nuclear spins. We consider the fine and hyperfine structure expected for such complexes. The Fermi contact interaction between electron and nuclear spins can cause spin exchange between atomic and molecular spins. It can drive inelastic collisions, with resonances of three distinct types, each with a characteristic width and peak height in the inelastic rate coefficient. Some of these resonances are broad enough to overlap and produce a background loss rate that is approximately proportional to the number of outgoing inelastic channels. Spin exchange can increase the density of states from which laser-induced loss may occur.
We show that the resonant dipole-dipole interaction can give rise to bound states between two and three Rydberg atoms with non-overlapping electron clouds. The dimer and trimer states arise from avoided level crossings between states converging to different fine structure manifolds in the limit of separated atoms. We analyze the angular dependence of the potential wells, characterize the quantum dynamics in these potentials and discuss methods for their production and detection. Typical distances between the atoms are of the order of several micrometers which can be resolved in state-of-the-art experiments. The potential depths and typical oscillation frequencies are about one order of magnitude larger as compared to the dimer and trimer states investigated in [PRA $textbf{86}$ 031401(R) (2012)] and [PRL $textbf{111}$ 233003 (2014)], respectively. We find that the dimer and trimer molecules can be aligned with respect to the axis of a weak electric field.
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $Rapprox 2,mutext{m}$, and each configuration is two-fold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا