No Arabic abstract
Context: There is a wide discrepancy in current estimates of the strength of convection flows in the solar interior obtained using different helioseismic methods applied to observations from SDO/HMI. The cause for these disparities is not known. Aims: As one step in the effort to resolve this discrepancy, we aim to characterize the multi-ridge fitting code for ring-diagram helioseismic analysis that is used to obtain flow estimates from local power spectra of solar oscillations. Methods: We updated the multi-ridge fitting code developed by Greer et al.(2014) to solve several problems we identified through our inspection of the code. In particular, we changed the merit function to account for the smoothing of the power spectra, model for the power spectrum, and noise estimates. We used Monte Carlo simulations to generate synthetic data and to characterize the noise and bias of the updated code by fitting these synthetic data. Results: The bias in the output fit parameters, apart from the parameter describing the amplitude of the p-mode resonances in the power spectrum, is below what can be measured from the Monte-Carlo simulations. The amplitude parameters are underestimated; this is a consequence of choosing to fit the logarithm of the averaged power. We defer fixing this problem as it is well understood and not significant for measuring flows in the solar interior. The scatter in the fit parameters from the Monte-Carlo simulations is well-modeled by the formal error estimates from the code. Conclusions: We document and demonstrate a reliable multi-ridge fitting method for ring-diagram analysis. The differences between the updated fitting results and the original results are less than one order of magnitude and therefore we suspect that the changes will not eliminate the aforementioned orders-of-magnitude discrepancy in the amplitude of convective flows in the solar interior.
In this paper, we present a study of the Trapezium cluster in Orion. We analyze flux-calibrated VLT/MUSE spectra of 361 stars to simultaneously measure the spectral types, reddening, and the optical veiling due to accretion. We find that the extinction law from Cardelli et al. (1989) with a total-to-selective extinction value of $R_{rm V}=$5.5 is more suitable for this cluster. For 68% of the sample the new spectral types are consistent with literature spectral types within 2 subclasses, but as expected, we derive systematically later types than the literature by one to two subclasses for the sources with significant accretion levels. Here we present an improved Hertzsprung-Russell (H-R) diagram of the Trapezium cluster, in which the contamination by optical veiling on spectral types and stellar luminosities has been properly removed. A comparison of the locations of the stars in the H-R diagram with the non-magnetic and magnetic pre-main sequence evolutionary tracks indicates an age of 1--2~Myr. The magnetic pre-main sequence evolutionary tracks can better explain the luminosities of the low-mass stars. In the H-R diagram, the cluster exhibits a large luminosity spread ($sigma$(Log~$L_{star}/L_{odot})sim$0.3). By collecting a sample of 14 clusters/groups with different ages, we find that the luminosity spread tends to be constant ($sigma$(Log~$L_{star}/L_{odot})sim$0.2--0.25) after 2~Myr, which suggests that age spread is not the main cause of the spread. There are $sim$0.1~dex larger luminosity spreads for the younger clusters, e.g., the Trapezium cluster, than the older clusters, which can be explained by the starspots, accretion history and circumstellar disk orientations.
Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design(CAD). In this paper, an improved isogeometric analysis(IGA) method for trimmed geometries is proposed. We will show that the proposed method reduces the numerical error of physical solution by 50% for simple trimmed geometries, and the condition number of stiffness matrix is also decreased. Furthermore, the number of integration elements and integration points involved in the solving process can be significantly reduced compared to previous approaches, drastically improving the computational efficiency for IGA problems on the trimmed geometry. Several examples are illustrated to show the effectiveness of the proposed approach.
Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ~15{deg} (180 Mm) or more in order to provide reasonable mode sets for
We study Doppler velocity measurements at multiple heights in the solar atmosphere using a set of six filtergrams obtained by the Helioseismic magnetic Imager on board the Solar Dynamics Observatory. There are clear and significant phase differences between core and wing Dopplergrams in the frequency range above the photospheric acoustic cutoff frequency, which indicates that these are really multi-height datasets.
The single-valued parameter (SVP) method is a parametric method that offers the possibility of computing radiative accelerations in stellar interiors much faster than other methods. It has been implemented in a few stellar evolution numerical codes for about a decade. In the present paper, we describe improvements we have recently brought in the process of preparing, from atomic/opacity databases, the SVP tables that are needed to use the method, and their extension to a larger stellar mass domain (from 1 to 10 solar mass) on the main-sequence. We discuss the validity domain of the method. We also present the website from where new tables and codes can be freely accessed and implemented in stellar evolution codes.