Do you want to publish a course? Click here

Kolmogorovian active turbulence of a sparse assembly of interacting swimmers

111   0   0.0 ( 0 )
 Added by Romain Volk
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Active matter, composed of self-propelled entities, forms a wide class of out-of-equilibrium systems that display striking collective behaviors among which the so-called active turbulence where spatially and time disordered flow patterns spontaneously arise in a variety of {active systems}. De facto, the active turbulence naming suggests a connection with a second seminal class of out-of-equilibrium systems, fluid turbulence, and yet of very different nature with energy injected at global system scale rather than at the elementary scale of single constituents. Indeed the existence of a possible strong-tie between active and canonical turbulence remains an open question and a field of profuse research. Using an assembly of self-propelled interfacial particles, we show experimentally that this active system shares remarkable quantitative similarities with canonical fluid turbulence, as described by the celebrated 1941 phenomenology of Kolmogorov. Making active matter entering into the universality class of fluid turbulence not only benefits to its future development but may also provide new insights for the longstanding description of turbulent flows, arguably one of the biggest remaining mysteries in classical physics.



rate research

Read More

Early research in aerodynamics and biological propulsion was dramatically advanced by the analytical solutions of Theodorsen, von K{a}rm{a}n, Wu and others. While these classical solutions apply only to isolated swimmers, the flow interactions between multiple swimmers are relevant to many practical applications, including the schooling and flocking of animal collectives. In this work, we derive a class of solutions that describe the hydrodynamic interactions between an arbitrary number of swimmers in a two-dimensional inviscid fluid. Our approach is rooted in multiply-connected complex analysis and exploits several recent results. Specifically, the transcendental (Schottky-Klein) prime function serves as the basic building block to construct the appropriate conformal maps and leading-edge-suction functions, which allows us to solve the modified Schwarz problem that arises. As such, our solutions generalize classical thin aerofoil theory, specifically Wus waving-plate analysis, to the case of multiple swimmers. For the case of a pair of interacting swimmers, we develop an efficient numerical implementation that allows rapid computations of the forces on each swimmer. We investigate flow-mediated equilibria and find excellent agreement between our new solutions and previously reported experimental results. Our solutions recover and unify disparate results in the literature, thereby opening the door for future studies into the interactions between multiple swimmers.
We develop a general hydrodynamic theory describing a system of interacting actively propelling particles of arbitrary shape suspended in a viscous fluid. We model the active part of the particle motion using a slip velocity prescribed on the otherwise rigid particle surfaces. We introduce the general framework for particle rotations and translations by applying the Lorentz reciprocal theorem for a collection of mobile particles with arbitrary surface slip. We then develop an approximate theory applicable to widely separated spheres, including hydrodynamic interactions up to the level of force quadrupoles. We apply our theory to a general example involving a prescribed slip velocity, and a specific case concerning the autonomous motion of chemically active particles moving by diffusiophoresis due to self-generated chemical gradients.
A Lorenz-like model was set up recently, to study the hydrodynamic instabilities in a driven active matter system. This Lorenz model differs from the standard one in that all three equations contain non-linear terms. The additional non-linear term comes from the active matter contribution to the stress tensor. In this work, we investigate the non-linear properties of this Lorenz model both analytically and numerically. The significant feature of the model is the passage to chaos through a complete set of period-doubling bifurcations above the Hopf point for inverse Schmidt numbers above a critical value. Interestingly enough, at these Schmidt numbers a strange attractor and stable fixed points coexist beyond the homoclinic point. At the Hopf point, the strange attractor disappears leaving a high-period periodic orbit. This periodic state becomes the expected limit cycle through a set of bifurcations and then undergoes a sequence of period-doubling bifurcations leading to the formation of a strange attractor. This is the first situation where a Lorenz-like model has shown a set of consecutive period-doubling bifurcations in a physically relevant transition to turbulence.
We investigate experimentally turbulence of surface gravity waves in the Coriolis facility in Grenoble by using both high sensitivity local probes and a time and space resolved stereoscopic reconstruction of the water surface. We show that the water deformation is made of the superposition of weakly nonlinear waves following the linear dispersion relation and of bound waves resulting from non resonant triadic interaction. Although the theory predicts a 4-wave resonant coupling supporting the presence of an inverse cascade of wave action, we do not observe such inverse cascade. We investigate 4-wave coupling by computing the tricoherence i.e. 4-wave correlations. We observed very weak values of the tricoherence at the frequencies excited on the linear dispersion relation that are consistent with the hypothesis of weak coupling underlying the weak turbulence theory.
Marine microorganisms must cope with complex flow patterns and even turbulence as they navigate the ocean. To survive they must avoid predation and find efficient energy sources. A major difficulty in analysing possible survival strategies is that the time series of environmental cues in non-linear flow is complex, and that it depends on the decisions taken by the organism. One way of determining and evaluating optimal strategies is reinforcement learning. In a proof-of-principle study, Colabrese et al. [Phys. Rev. Lett. (2017)] used this method to find out how a micro-swimmer in a vortex flow can navigate towards the surface as quickly as possible, given a fixed swimming speed. The swimmer measured its instantaneous swimming direction and the local flow vorticity in the laboratory frame, and reacted to these cues by swimming either left, right, up, or down. However, usually a motile microorganism measures the local flow rather than global information, and it can only react in relation to the local flow, because in general it cannot access global information (such as up or down in the laboratory frame). Here we analyse optimal strategies with local signals and actions that do not refer to the laboratory frame. We demonstrate that symmetry-breaking is required in order to learn vertical migration in a meaningful way. Using reinforcement learning we analyse the emerging strategies for different sets of environmental cues that microorganisms are known to measure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا