Do you want to publish a course? Click here

Self-organized bistability and its possible relevance for brain dynamics

81   0   0.0 ( 0 )
 Added by Victor Buendia
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-organized bistability (SOB) is the counterpart of self-organized criticality (SOC), for systems tuning themselves to the edge of bistability of a discontinuous phase transition, rather than to the critical point of a continuous one. The equations defining the mathematical theory of SOB turn out to bear strong resemblance to a (Landau-Ginzburg) theory recently proposed to analyze the dynamics of the cerebral cortex. This theory describes the neuronal activity of coupled mesoscopic patches of cortex, homeostatically regulated by short-term synaptic plasticity. The theory for cortex dynamics entails, however, some significant differences with respect to SOB, including the lack of a (bulk) conservation law, the absence of a perfect separation of timescales and, the fact that in the former, but not in the second, there is a parameter that controls the overall system state (in blatant contrast with the very idea of self-organization). Here, we scrutinize --by employing a combination of analytical and computational tools-- the analogies and differences between both theories and explore whether in some limit SOB can play an important role to explain the emergence of scale-invariant neuronal avalanches observed empirically in the cortex. We conclude that, actually, in the limit of infinitely slow synaptic-dynamics, the two theories become identical, but the timescales required for the self-organization mechanism to be effective do not seem to be biologically plausible. We discuss the key differences between self-organization mechanisms with/without conservation and with/without infinitely separated timescales. In particular, we introduce the concept of self-organized collective oscillations and scrutinize the implications of our findings in neuroscience, shedding new light into the problems of scale invariance and oscillations in cortical dynamics.

rate research

Read More

Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions, due to the divergence of all the moments (cumulants). We have solved this problem by introducing a `pseudo-cumulants expansion. This allows us to develop a reduction methodology for heterogeneous spiking neural networks subject to extrinsinc and endogenous noise sources, thus generalizing the mean-field formulation introduced in [E. Montbrio et al., Phys. Rev. X 5, 021028 (2015)].
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attacted much comment, ranging from the very positive to the polemical. The other papers in this special issue (Aschwanden et al, 2014; McAteer et al, 2014; Sharma et al, 2015) showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Baks own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner, 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfelds original papers.
The existence of power-law distributions is only a first requirement in the validation of the critical behavior of a system. Long-range spatio-temporal correlations are fundamental for the spontaneous neuronal activity to be the expression of a system acting close to a critical point. This chapter focuses on temporal correlations and avalanche dynamics in the spontaneous activity of cortex slice cultures and in the resting fMRI BOLD signal. Long-range correlations are investigated by means of the scaling of power spectra and of Detrended Fluctuations Analysis. The existence of 1/f decay in the power spectrum, as well as of power-law scaling in the root mean square fluctuations function for the appropriate balance of excitation and inhibition suggests that long-range temporal correlations are distinctive of healthy brains. The corresponding temporal organization of neuronal avalanches can be dissected by analyzing the distribution of inter-event times between successive events. In rat cortex slice cultures this distribution exhibits a non-monotonic behavior, not usually found in other natural processes. Numerical simulations provide evidences that this behavior is a consequence of the alternation between states of high and low activity, leading to a dynamic balance between excitation and inhibition that tunes the system at criticality. In this scenario, inter-times show a peculiar relation with avalanche sizes, resulting in a hierarchical structure of avalanche sequences. Large avalanches correspond to low-frequency oscillations, and trigger cascades of smaller avalanches that are part of higher frequency rhythms. The self-regulated balance of excitation and inhibition observed in cultures is confirmed at larger scales, i.e. on fMRI data from resting brain activity, and appears to be closely related to critical features of avalanche activity.
The well known Sandpile model of self-organized criticality generates avalanches of all length and time scales, without tuning any parameters. In the original models the external drive is randomly selected. Here we investigate a drive which depends on the present state of the system, namely the effect of favoring sites with a certain height in the deposition process. If sites with height three are favored, the system stays in a critical state. Our numerical results indicate the same universality class as the original model with random depositition, although the stationary state is approached very differently. In constrast, when favoring sites with height two, only avalanches which cover the entire system occur. Furthermore, we investigate the distributions of sites with a certain height, as well as the transient processes of the different variants of the external drive.
We propose a dynamical model in which a network structure evolves in a self-organized critical (SOC) manner and explain a possible origin of the emergence of fractal and small-world networks. Our model combines a network growth and its decay by failures of nodes. The decay mechanism reflects the instability of large functional networks against cascading overload failures. It is demonstrated that the dynamical system surely exhibits SOC characteristics, such as power-law forms of the avalanche size distribution, the cluster size distribution, and the distribution of the time interval between intermittent avalanches. During the network evolution, fractal networks are spontaneously generated when networks experience critical cascades of failures that lead to a percolation transition. In contrast, networks far from criticality have small-world structures. We also observe the crossover behavior from fractal to small-world structure in the network evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا