Do you want to publish a course? Click here

Avalanche Dynamics and Correlations in Neural Systems

88   0   0.0 ( 0 )
 Added by Fabrizio Lombardi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The existence of power-law distributions is only a first requirement in the validation of the critical behavior of a system. Long-range spatio-temporal correlations are fundamental for the spontaneous neuronal activity to be the expression of a system acting close to a critical point. This chapter focuses on temporal correlations and avalanche dynamics in the spontaneous activity of cortex slice cultures and in the resting fMRI BOLD signal. Long-range correlations are investigated by means of the scaling of power spectra and of Detrended Fluctuations Analysis. The existence of 1/f decay in the power spectrum, as well as of power-law scaling in the root mean square fluctuations function for the appropriate balance of excitation and inhibition suggests that long-range temporal correlations are distinctive of healthy brains. The corresponding temporal organization of neuronal avalanches can be dissected by analyzing the distribution of inter-event times between successive events. In rat cortex slice cultures this distribution exhibits a non-monotonic behavior, not usually found in other natural processes. Numerical simulations provide evidences that this behavior is a consequence of the alternation between states of high and low activity, leading to a dynamic balance between excitation and inhibition that tunes the system at criticality. In this scenario, inter-times show a peculiar relation with avalanche sizes, resulting in a hierarchical structure of avalanche sequences. Large avalanches correspond to low-frequency oscillations, and trigger cascades of smaller avalanches that are part of higher frequency rhythms. The self-regulated balance of excitation and inhibition observed in cultures is confirmed at larger scales, i.e. on fMRI data from resting brain activity, and appears to be closely related to critical features of avalanche activity.



rate research

Read More

Self-organized bistability (SOB) is the counterpart of self-organized criticality (SOC), for systems tuning themselves to the edge of bistability of a discontinuous phase transition, rather than to the critical point of a continuous one. The equations defining the mathematical theory of SOB turn out to bear strong resemblance to a (Landau-Ginzburg) theory recently proposed to analyze the dynamics of the cerebral cortex. This theory describes the neuronal activity of coupled mesoscopic patches of cortex, homeostatically regulated by short-term synaptic plasticity. The theory for cortex dynamics entails, however, some significant differences with respect to SOB, including the lack of a (bulk) conservation law, the absence of a perfect separation of timescales and, the fact that in the former, but not in the second, there is a parameter that controls the overall system state (in blatant contrast with the very idea of self-organization). Here, we scrutinize --by employing a combination of analytical and computational tools-- the analogies and differences between both theories and explore whether in some limit SOB can play an important role to explain the emergence of scale-invariant neuronal avalanches observed empirically in the cortex. We conclude that, actually, in the limit of infinitely slow synaptic-dynamics, the two theories become identical, but the timescales required for the self-organization mechanism to be effective do not seem to be biologically plausible. We discuss the key differences between self-organization mechanisms with/without conservation and with/without infinitely separated timescales. In particular, we introduce the concept of self-organized collective oscillations and scrutinize the implications of our findings in neuroscience, shedding new light into the problems of scale invariance and oscillations in cortical dynamics.
Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions, due to the divergence of all the moments (cumulants). We have solved this problem by introducing a `pseudo-cumulants expansion. This allows us to develop a reduction methodology for heterogeneous spiking neural networks subject to extrinsinc and endogenous noise sources, thus generalizing the mean-field formulation introduced in [E. Montbrio et al., Phys. Rev. X 5, 021028 (2015)].
81 - Renat Yulmetyev 2000
In this paper we present the concept of description of random processes in complex systems with the discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCF). We have introduced the dynamic (time dependent) information Shannon entropy $S_i(t)$ where i=0,1,2,3,... as an information measure of stochastic dynamics of time correlation $(i=0)$ and time memory (i=1,2,3,...). The set of functions $S_i(t)$ constitute the quantitative measure of time correlation disorder $(i=0)$ and time memory disorder (i=1,2,3,...) in complex system. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCF and memory function.The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR-intervals from human ECGs shows convincing evidence for a non-Markovian phenomemena associated with a peculiarities in short and long-range scaling. This method may be of use in distinguishing healthy from pathologic data sets based in differences in these non-Markovian properties.
Neural avalanches are collective firings of neurons that exhibit emergent scale-free behavior. Understanding the nature and distribution of these avalanches is an important element in understanding how the brain functions. We study a model of neural avalanches for which the dynamics are governed by neutral theory. The neural avalanches are defined using causal connections between the firing neurons. We analyze the scaling of causal neural avalanches as the critical point is approached from the absorbing phase. By using cluster analysis tools from percolation theory, we characterize the critical properties of the neural avalanches. We identify the tuning parameters consistent with experiments. The scaling hypothesis provides a unified explanation of the power laws which characterize the critical point. The critical exponents characterizing the avalanche distributions and divergence of the response functions are consistent with the predictions of the scaling hypothesis. We use a universal scaling function for the avalanche profile to find that the firing rates for avalanches of different durations show data collapse after appropriate rescaling. We also find data collapse for the avalanche distribution functions, which is stronger evidence of criticality than just the existence of power laws. Critical slowing-down and power law relaxation of avalanches is observed as the system is tuned to its critical point. We discuss how our results motivate future empirical studies of criticality in the brain.
102 - Debraj Das , Shamik Gupta 2018
We obtain exact results on autocorrelation of the order parameter in the nonequilibrium stationary state of a paradigmatic model of spontaneous collective synchronization, the Kuramoto model of coupled oscillators, evolving in presence of Gaussian, white noise. The method relies on an exact mapping of the stationary-state dynamics of the model in the thermodynamic limit to the noisy dynamics of a single, non-uniform oscillator, and allows to obtain besides the Kuramoto model the autocorrelation in the equilibrium stationary state of a related model of long-range interactions, the Brownian mean-field model. Both the models show a phase transition between a synchronized and an incoherent phase at a critical value of the noise strength. Our results indicate that in the two phases as well as at the critical point, the autocorrelation for both the model decays as an exponential with a rate that increases continuously with the noise strength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا