No Arabic abstract
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no online algorithm has a worst-case competitive ratio better than $0.5$. In this work, we consider the bipartite matching problem with edge arrivals in a natural stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized according to a known probability distribution. We focus on a natural class of prune & greedy online policies motivated by practical considerations from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages: first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy algorithm on the pruned graph. We propose prune & greedy algorithms that are $0.552$-competitive on the instances that can be pruned to a $2$-regular stochastic bipartite graph, and $0.503$-competitive on arbitrary bipartite graphs. The algorithms and our analysis significantly deviate from the prior work. We first obtain analytically manageable lower bound on the size of the matching, which leads to a non linear optimization problem. We further reduce this problem to a continuous optimization with a constant number of parameters that can be solved using standard software tools.
We provide online algorithms for secretary matching in general weighted graphs, under the well-studied models of vertex and edge arrivals. In both models, edges are associated with arbitrary weights that are unknown from the outset, and are revealed online. Under vertex arrival, vertices arrive online in a uniformly random order; upon the arrival of a vertex $v$, the weights of edges from $v$ to all previously arriving vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. Under edge arrival, edges arrive online in a uniformly random order; upon the arrival of an edge $e$, its weight is revealed, and the algorithm decides whether to include it in the matching or not. We provide a $5/12$-competitive algorithm for vertex arrival, and show it is tight. For edge arrival, we provide a $1/4$-competitive algorithm. Both results improve upon state of the art bounds for the corresponding settings. Interestingly, for vertex arrival, secretary matching in general graphs outperforms secretary matching in bipartite graphs with 1-sided arrival, where $1/e$ is the best possible guarantee.
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal competitive ratio of $1-1/e$. Later, Aggarwal et al. (SODA 2011) generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial $1/2$-competitive greedy algorithm. In this paper, we present the first online algorithm that breaks the long-standing $1/2$ barrier and achieves a competitive ratio of at least $0.5086$. In light of the hardness result of Kapralov, Post, and Vondrak (SODA 2013) that restricts beating a $1/2$ competitive ratio for the more general problem of monotone submodular welfare maximization, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in the online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori known probability distribution. Under edge arrival, the weight of each edge is revealed upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched prophet inequalities that captures online settings where elements arrive in batches; in particular it captures matching under the two aforementioned arrival models. Our algorithms rely on the construction of suitable online contention resolution scheme (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched prophet inequality to batched OCRS, and finally we construct batched OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For the vertex arrival, our result is tight. Interestingly, a pricing-based prophet inequality with comparable competitive ratios is unknown.
This article identifies a key algorithmic ingredient in the edge-weighted online matching algorithm by Zadimoghaddam (2017) and presents a simplified algorithm and its analysis to demonstrate how it works in the unweighted case.
In the stochastic online vector balancing problem, vectors $v_1,v_2,ldots,v_T$ chosen independently from an arbitrary distribution in $mathbb{R}^n$ arrive one-by-one and must be immediately given a $pm$ sign. The goal is to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to $mathsf{polylog}(nT)$ factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC 20). In particular, for the Koml{o}s problem where $|v_t|_2leq 1$ for each $t$, our algorithm achieves $tilde{O}(1)$ discrepancy with high probability, improving upon the previous $tilde{O}(n^{3/2})$ bound. For Tusn{a}dys problem of minimizing the discrepancy of axis-aligned boxes, we obtain an $O(log^{d+4} T)$ bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker $O(log^{2d+1} T)$ bound. We also consider the Banaszczyk setting, where given a symmetric convex body $K$ with Gaussian measure at least $1/2$, our algorithm achieves $tilde{O}(1)$ discrepancy with respect to the norm given by $K$ for input distributions with sub-exponential tails. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multi-color discrepancy.