Do you want to publish a course? Click here

Almost-Killing equation: Stability, hyperbolicity, and black hole Gauss law

123   0   0.0 ( 0 )
 Added by Justin Feng
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the Hamiltonian formulation and hyperbolicity of the almost-Killing equation (AKE). We find that for all but one parameter choice, the Hamiltonian is unbounded, and in some cases, the AKE has ghost degrees of freedom. We also show the AKE is only strongly hyperbolic for one parameter choice, which corresponds to a case in which the AKE has ghosts. Fortunately, one finds that the AKE reduces to the homogeneous Maxwell equation in a vacuum, so that with the addition of the divergence-free constraint (a Lorenz gauge), one can still obtain a well-posed problem that is stable in the sense that the corresponding Hamiltonian is positive definite. An analysis of the resulting Komar currents reveals an exact Gauss law for a system of black holes in vacuum spacetimes and suggests a possible measure of matter content in asymptotically flat spacetimes.



rate research

Read More

Killing vectors play a crucial role in characterizing the symmetries of a given spacetime. However, realistic astrophysical systems are in most cases only approximately symmetric. Even in the case of an astrophysical black hole, one might expect Killing symmetries to exist only in an approximate sense due to perturbations from external matter fields. In this work, we consider the generalized notion of Killing vectors provided by the almost Killing equation, and study the perturbations induced by a perturbation of a background spacetime satisfying exact Killing symmetry. To first order, we demonstrate that for nonradiative metric perturbations (that is, metric perturbations with nonvanishing trace) of symmetric vacuum spacetimes, the perturbed almost Killing equation avoids the problem of an unbounded Hamiltonian for hyperbolic parameter choices. For traceless metric perturbations, we obtain similar results for the second-order perturbation of the almost Killing equation, with some additional caveats. Thermodynamical implications are also explored.
We investigated the superradiance and stability of the novel 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling consant $alpha$ enhances the superradiance, while the negative $alpha$ suppresses it. The condition for superradiant instability is proved. We also worked out the quasinormal modes (QNMs) of the charged Einstein-Gauss-Bonnet black hole and found that the real part of all the QNMs live beyond the superradiance condition and the imaginary parts are all negative. Therefore this black hole is superradiant stable. When $alpha$ makes the black hole extremal, there are normal modes.
160 - S.O. Alexeyev 1997
Black holes are studied in the frames of superstring theory using a non-trivial numerical integration method. A low energy string action containing graviton, dilaton, Gauss-Bonnet and Maxwell contributions is considered. Four-dimensional black hole solutions are studied inside and outside the event horizon. The internal part of the solutions is shown to have a non-trivial topology.
Spontaneous scalarization is a gravitational phenomenon in which deviations from general relativity arise once a certain threshold in curvature is exceeded, while being entirely absent below that threshold. For black holes, scalarization is known to be triggered by a coupling between a scalar and the Gauss-Bonnet invariant. A coupling with the Ricci scalar, which can trigger scalarization in neutron stars, is instead known to not contribute to the onset of black hole scalarization, and has so far been largely ignored in the literature when studying scalarized black holes. In this paper, we study the combined effect of both these couplings on black hole scalarization. We show that the Ricci coupling plays a significant role in the properties of scalarized solutions and their domain of existence. This work is an important step in the construction of scalarization models that evade binary pulsar constraints and have general relativity as a cosmological late-time attractor, while still predicting deviations from general relativity in black hole observations.
168 - Lorenzo Rossi 2020
The first law of black hole mechanics has been the main motivation for investigating thermodynamic properties of black holes. The first version of this law was proved in cite{Bardeen:1973gs} by considering perturbations of an asymptotically flat, stationary black hole spacetime to other stationary black hole spacetimes. This result was then extended to fully general perturbations, first in the context of Einstein-Maxwell theory in cite{Sudarsky:1992ty},cite{Wald:1993ki}, and then in the context of a general diffeomorphism invariant theory of gravity with an arbitrary number of matter fields in cite{Wald:1993nt},cite{Iyer:1994ys}. Here a review of these two generalizations of the first law is presented, with particular attention to outlining the necessary formalisms and calculations in an explicit and thorough way, understandable at a graduate level. The open problem of defining the entropy for a dynamical black hole that satisfies a form of the second law of black hole mechanics is briefly discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا