The Charge-Symmetry-Breaking (CSB) character of the nucleon-nucleon interaction is well established. This work presents two different ways of introducing such effects into a nuclear Energy Density Functional (EDF). CSB terms are either coming from the effective theory expansion or are derived from electromagnetic mixing of $rho^0$ and $omega$ mesons. These terms are then introduced to Skyrme and Quark-Meson-Coupling EDFs, respectively.
Machine learning is employed to build an energy density functional for self-bound nuclear systems for the first time. By learning the kinetic energy as a functional of the nucleon density alone, a robust and accurate orbital-free density functional for nuclei is established. Self-consistent calculations that bypass the Kohn-Sham equations provide the ground-state densities, total energies, and root-mean-square radii with a high accuracy in comparison with the Kohn-Sham solutions. No existing orbital-free density functional theory comes close to this performance for nuclei. Therefore, it provides a new promising way for future developments of nuclear energy density functionals for the whole nuclear chart.
We show that the notion of partial dynamical symmetry is robust and founded on a microscopic many-body theory of nuclei. Based on the universal energy density functional framework, a general quantal boson Hamiltonian is derived and shown to have essentially the same spectroscopic character as that predicted by the partial SU(3) symmetry. The principal conclusion holds in two representative classes of energy density functionals: nonrelativistic and relativistic. The analysis is illustrated in application to the axially-deformed nucleus $^{168}$Er.
We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.
We introduce a finite-range pseudopotential built as an expansion in derivatives up to next-to-next-to-next-to-leading order (N$^3$LO) and we calculate the corresponding nonlocal energy density functional (EDF). The coupling constants of the nonlocal EDF, for both finite nuclei and infinite nuclear matter, are expressed through the parameters of the pseudopotential. All central, spin-orbit, and tensor terms of the pseudopotential are derived both in the spherical-tensor and Cartesian representation. At next-to-leading order (NLO), we also derive relations between the nonlocal EDF expressed in the spherical-tensor and Cartesian formalism. Finally, a simplified version of the finite-range pseudopotential is considered, which generates the EDF identical to that generated by a local potential.
We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and experiment. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more, or one less neutron or proton. Theoretically, bare SPEs, before being confronted with experiment, must be corrected for the effects of the particle-vibration-coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with experiment, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.