Do you want to publish a course? Click here

Lipschitz Constrained Parameter Initialization for Deep Transformers

94   0   0.0 ( 0 )
 Added by Hongfei Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The Transformer translation model employs residual connection and layer normalization to ease the optimization difficulties caused by its multi-layer encoder/decoder structure. Previous research shows that even with residual connection and layer normalization, deep Transformers still have difficulty in training, and particularly Transformer models with more than 12 encoder/decoder layers fail to converge. In this paper, we first empirically demonstrate that a simple modification made in the official implementation, which changes the computation order of residual connection and layer normalization, can significantly ease the optimization of deep Transformers. We then compare the subtle differences in computation order in considerable detail, and present a parameter initialization method that leverages the Lipschitz constraint on the initialization of Transformer parameters that effectively ensures training convergence. In contrast to findings in previous research we further demonstrate that with Lipschitz parameter initialization, deep Transformers with the original computation order can converge, and obtain significant BLEU improvements with up to 24 layers. In contrast to previous research which focuses on deep encoders, our approach additionally enables Transformers to also benefit from deep decoders.

rate research

Read More

Transformers have shown improved performance when compared to previous architectures for sequence processing such as RNNs. Despite their sizeable performance gains, as recently suggested, the model is computationally expensive to train and with a high parameter budget. In light of this, we explore parameter-sharing methods in Transformers with a specific focus on generative models. We perform an analysis of different parameter sharing/reduction methods and develop the Subformer. Our model combines sandwich-style parameter sharing, which overcomes naive cross-layer parameter sharing in generative models, and self-attentive embedding factorization (SAFE). Experiments on machine translation, abstractive summarization and language modeling show that the Subformer can outperform the Transformer even when using significantly fewer parameters.
We explore the application of very deep Transformer models for Neural Machine Translation (NMT). Using a simple yet effective initialization technique that stabilizes training, we show that it is feasible to build standard Transformer-based models with up to 60 encoder layers and 12 decoder layers. These deep models outperform their baseline 6-layer counterparts by as much as 2.5 BLEU, and achieve new state-of-the-art benchmark results on WMT14 English-French (43.8 BLEU and 46.4 BLEU with back-translation) and WMT14 English-German (30.1 BLEU).The code and trained models will be publicly available at: https://github.com/namisan/exdeep-nmt.
State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between the layers of a pretrained language model. However, such modules are trained separately for each task and thus do not enable sharing information across tasks. In this paper, we show that we can learn adapter parameters for all layers and tasks by generating them using shared hypernetworks, which condition on task, adapter position, and layer id in a transformer model. This parameter-efficient multi-task learning framework allows us to achieve the best of both worlds by sharing knowledge across tasks via hypernetworks while enabling the model to adapt to each individual task through task-specific adapters. Experiments on the well-known GLUE benchmark show improved performance in multi-task learning while adding only 0.29% parameters per task. We additionally demonstrate substantial performance improvements in few-shot domain generalization across a variety of tasks. Our code is publicly available in https://github.com/rabeehk/hyperformer.
139 - Duc Le , Gil Keren , Julian Chan 2020
End-to-end models in general, and Recurrent Neural Network Transducer (RNN-T) in particular, have gained significant traction in the automatic speech recognition community in the last few years due to their simplicity, compactness, and excellent performance on generic transcription tasks. However, these models are more challenging to personalize compared to traditional hybrid systems due to the lack of external language models and difficulties in recognizing rare long-tail words, specifically entity names. In this work, we present novel techniques to improve RNN-Ts ability to model rare WordPieces, infuse extra information into the encoder, enable the use of alternative graphemic pronunciations, and perform deep fusion with personalized language models for more robust biasing. We show that these combined techniques result in 15.4%-34.5% relative Word Error Rate improvement compared to a strong RNN-T baseline which uses shallow fusion and text-to-speech augmentation. Our work helps push the boundary of RNN-T personalization and close the gap with hybrid systems on use cases where biasing and entity recognition are crucial.
Corporate mergers and acquisitions (M&A) account for billions of dollars of investment globally every year, and offer an interesting and challenging domain for artificial intelligence. However, in these highly sensitive domains, it is crucial to not only have a highly robust and accurate model, but be able to generate useful explanations to garner a users trust in the automated system. Regrettably, the recent research regarding eXplainable AI (XAI) in financial text classification has received little to no attention, and many current methods for generating textual-based explanations result in highly implausible explanations, which damage a users trust in the system. To address these issues, this paper proposes a novel methodology for producing plausible counterfactual explanations, whilst exploring the regularization benefits of adversarial training on language models in the domain of FinTech. Exhaustive quantitative experiments demonstrate that not only does this approach improve the model accuracy when compared to the current state-of-the-art and human performance, but it also generates counterfactual explanations which are significantly more plausible based on human trials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا