No Arabic abstract
We consider the fusion of two aerodynamic data sets originating from differing fidelity physical or computer experiments. We specifically address the fusion of: 1) noisy and in-complete fields from wind tunnel measurements and 2) deterministic but biased fields from numerical simulations. These two data sources are fused in order to estimate the emph{true} field that best matches measured quantities that serves as the ground truth. For example, two sources of pressure fields about an aircraft are fused based on measured forces and moments from a wind-tunnel experiment. A fundamental challenge in this problem is that the true field is unknown and can not be estimated with 100% certainty. We employ a Bayesian framework to infer the true fields conditioned on measured quantities of interest; essentially we perform a emph{statistical correction} to the data. The fused data may then be used to construct more accurate surrogate models suitable for early stages of aerospace design. We also introduce an extension of the Proper Orthogonal Decomposition with constraints to solve the same problem. Both methods are demonstrated on fusing the pressure distributions for flow past the RAE2822 airfoil and the Common Research Model wing at transonic conditions. Comparison of both methods reveal that the Bayesian method is more robust when data is scarce while capable of also accounting for uncertainties in the data. Furthermore, given adequate data, the POD based and Bayesian approaches lead to emph{similar} results.
Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: An imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that 1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property spaces, and 2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. By eliminating inherent overlaps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our flexible method can distill unique subsets regardless of the metric employed. Our diverse subsets are provided publicly for use by any designer.
Forecasting the movements of stock prices is one the most challenging problems in financial markets analysis. In this paper, we use Machine Learning (ML) algorithms for the prediction of future price movements using limit order book data. Two different sets of features are combined and evaluated: handcrafted features based on the raw order book data and features extracted by ML algorithms, resulting in feature vectors with highly variant dimensionalities. Three classifiers are evaluated using combinations of these sets of features on two different evaluation setups and three prediction scenarios. Even though the large scale and high frequency nature of the limit order book poses several challenges, the scope of the conducted experiments and the significance of the experimental results indicate that Machine Learning highly befits this task carving the path towards future research in this field.
An innovative physics-guided learning algorithm for predicting the mechanical response of materials and structures is proposed in this paper. The key concept of the proposed study is based on the fact that physics models are governed by Partial Differential Equation (PDE), and its loading/ response mapping can be solved using Finite Element Analysis (FEA). Based on this, a special type of deep convolutional neural network (DCNN) is proposed that takes advantage of our prior knowledge in physics to build data-driven models whose architectures are of physics meaning. This type of network is named as FEA-Net and is used to solve the mechanical response under external loading. Thus, the identification of a mechanical system parameters and the computation of its responses are treated as the learning and inference of FEA-Net, respectively. Case studies on multi-physics (e.g., coupled mechanical-thermal analysis) and multi-phase problems (e.g., composite materials with random micro-structures) are used to demonstrate and verify the theoretical and computational advantages of the proposed method.
Failure in brittle materials led by the evolution of micro- to macro-cracks under repetitive or increasing loads is often catastrophic with no significant plasticity to advert the onset of fracture. Early failure detection with respective location are utterly important features in any practical application, both of which can be effectively addressed using artificial intelligence. In this paper, we develop a supervised machine learning (ML) framework to predict failure in an isothermal, linear elastic and isotropic phase-field model for damage and fatigue of brittle materials. Time-series data of the phase-field model is extracted from virtual sensing nodes at different locations of the geometry. A pattern recognition scheme is introduced to represent time-series data/sensor nodes responses as a pattern with a corresponding label, integrated with ML algorithms, used for damage classification with identified patterns. We perform an uncertainty analysis by superposing random noise to the time-series data to assess the robustness of the framework with noise-polluted data. Results indicate that the proposed framework is capable of predicting failure with acceptable accuracy even in the presence of high noise levels. The findings demonstrate satisfactory performance of the supervised ML framework, and the applicability of artificial intelligence and ML to a practical engineering problem, i.,e, data-driven failure prediction in brittle materials.
With the rapid development of intelligent vehicles and Advanced Driving Assistance Systems (ADAS), a mixed level of human driver engagements is involved in the transportation system. Visual guidance for drivers is essential under this situation to prevent potential risks. To advance the development of visual guidance systems, we introduce a novel sensor fusion methodology, integrating camera image and Digital Twin knowledge from the cloud. Target vehicle bounding box is drawn and matched by combining results of object detector running on ego vehicle and position information from the cloud. The best matching result, with a 79.2% accuracy under 0.7 Intersection over Union (IoU) threshold, is obtained with depth image served as an additional feature source. Game engine-based simulation results also reveal that the visual guidance system could improve driving safety significantly cooperate with the cloud Digital Twin system.