Do you want to publish a course? Click here

Data-Driven Failure Prediction in Brittle Materials: A Phase-Field Based Machine Learning Framework

112   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Failure in brittle materials led by the evolution of micro- to macro-cracks under repetitive or increasing loads is often catastrophic with no significant plasticity to advert the onset of fracture. Early failure detection with respective location are utterly important features in any practical application, both of which can be effectively addressed using artificial intelligence. In this paper, we develop a supervised machine learning (ML) framework to predict failure in an isothermal, linear elastic and isotropic phase-field model for damage and fatigue of brittle materials. Time-series data of the phase-field model is extracted from virtual sensing nodes at different locations of the geometry. A pattern recognition scheme is introduced to represent time-series data/sensor nodes responses as a pattern with a corresponding label, integrated with ML algorithms, used for damage classification with identified patterns. We perform an uncertainty analysis by superposing random noise to the time-series data to assess the robustness of the framework with noise-polluted data. Results indicate that the proposed framework is capable of predicting failure with acceptable accuracy even in the presence of high noise levels. The findings demonstrate satisfactory performance of the supervised ML framework, and the applicability of artificial intelligence and ML to a practical engineering problem, i.,e, data-driven failure prediction in brittle materials.



rate research

Read More

In brittle fracture applications, failure paths, regions where the failure occurs and damage statistics, are some of the key quantities of interest (QoI). High-fidelity models for brittle failure that accurately predict these QoI exist but are highly computationally intensive, making them infeasible to incorporate in upscaling and uncertainty quantification frameworks. The goal of this paper is to provide a fast heuristic to reasonably estimate quantities such as failure path and damage in the process of brittle failure. Towards this goal, we first present a method to predict failure paths under tensile loading conditions and low-strain rates. The method uses a $k$-nearest neighbors algorithm built on fracture process zone theory, and identifies the set of all possible pre-existing cracks that are likely to join early to form a large crack. The method then identifies zone of failure and failure paths using weighted graphs algorithms. We compare these failure paths to those computed with a high-fidelity model called the Hybrid Optimization Software Simulation Suite (HOSS). A probabilistic evolution model for average damage in a system is also developed that is trained using 150 HOSS simulations and tested on 40 simulations. A non-parametric approach based on confidence intervals is used to determine the damage evolution over time along the dominant failure path. For upscaling, damage is the key QoI needed as an input by the continuum models. This needs to be informed accurately by the surrogate models for calculating effective modulii at continuum-scale. We show that for the proposed average damage evolution model, the prediction accuracy on the test data is more than 90%. In terms of the computational time, the proposed models are $approx mathcal{O}(10^6)$ times faster compared to high-fidelity HOSS.
The study of tunnel failure characteristics under the load of external explosion source is an important problem in tunnel design and protection, in particular, it is of great significance to construct an intelligent topological feature description of the tunnel failure process. The failure characteristics of tunnels under explosive loading are described by using discrete element method and persistent homology-based machine learning. Firstly, the discrete element model of shallow buried tunnel was established in the discrete element software, and the explosive load was equivalent to a series of uniformly distributed loads acting on the surface by Saint-Venant principle, and the dynamic response of the tunnel under multiple explosive loads was obtained through iterative calculation. The topological characteristics of surrounding rock is studied by persistent homology-based machine learning. The geometric, physical and interunit characteristics of the tunnel subjected to explosive loading are extracted, and the nonlinear mapping relationship between the topological quantity of persistent homology, and the failure characteristics of the surrounding rock is established, and the results of the intelligent description of the failure characteristics of the tunnel are obtained. The research shows that the length of the longest Betty 1 bar code is closely related to the stability of the tunnel, which can be used for effective early warning of the tunnel failure, and an intelligent description of the tunnel failure process can be established to provide a new idea for tunnel engineering protection.
139 - Houpu Yao , Yi Gao , Yongming Liu 2020
An innovative physics-guided learning algorithm for predicting the mechanical response of materials and structures is proposed in this paper. The key concept of the proposed study is based on the fact that physics models are governed by Partial Differential Equation (PDE), and its loading/ response mapping can be solved using Finite Element Analysis (FEA). Based on this, a special type of deep convolutional neural network (DCNN) is proposed that takes advantage of our prior knowledge in physics to build data-driven models whose architectures are of physics meaning. This type of network is named as FEA-Net and is used to solve the mechanical response under external loading. Thus, the identification of a mechanical system parameters and the computation of its responses are treated as the learning and inference of FEA-Net, respectively. Case studies on multi-physics (e.g., coupled mechanical-thermal analysis) and multi-phase problems (e.g., composite materials with random micro-structures) are used to demonstrate and verify the theoretical and computational advantages of the proposed method.
Forecasting the movements of stock prices is one the most challenging problems in financial markets analysis. In this paper, we use Machine Learning (ML) algorithms for the prediction of future price movements using limit order book data. Two different sets of features are combined and evaluated: handcrafted features based on the raw order book data and features extracted by ML algorithms, resulting in feature vectors with highly variant dimensionalities. Three classifiers are evaluated using combinations of these sets of features on two different evaluation setups and three prediction scenarios. Even though the large scale and high frequency nature of the limit order book poses several challenges, the scope of the conducted experiments and the significance of the experimental results indicate that Machine Learning highly befits this task carving the path towards future research in this field.
In this paper, five different approaches for reduced-order modeling of brittle fracture in geomaterials, specifically concrete, are presented and compared. Four of the five methods rely on machine learning (ML) algorithms to approximate important aspects of the brittle fracture problem. In addition to the ML algorithms, each method incorporates different physics-based assumptions in order to reduce the computational complexity while maintaining the physics as much as possible. This work specifically focuses on using the ML approaches to model a 2D concrete sample under low strain rate pure tensile loading conditions with 20 preexisting cracks present. A high-fidelity finite element-discrete element model is used to both produce a training dataset of 150 simulations and an additional 35 simulations for validation. Results from the ML approaches are directly compared against the results from the high-fidelity model. Strengths and weaknesses of each approach are discussed and the most important conclusion is that a combination of physics-informed and data-driven features are necessary for emulating the physics of crack propagation, interaction and coalescence. All of the models presented here have runtimes that are orders of magnitude faster than the original high-fidelity model and pave the path for developing accurate reduced order models that could be used to inform larger length-scale models with important sub-scale physics that often cannot be accounted for due to computational cost.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا