Do you want to publish a course? Click here

Adaptive Beamforming Design for mmWave RIS-Aided Joint Localization and Communication

243   0   0.0 ( 0 )
 Added by Jiguang He
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The concept of reconfigurable intelligent surface (RIS) has been proposed to change the propagation of electromagnetic waves, e.g., reflection, diffraction, and refraction. To accomplish this goal, the phase values of the discrete RIS units need to be optimized. In this paper, we consider RIS-aided millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems for both accurate positioning and high data-rate transmission. We propose an adaptive phase shifter design based on hierarchical codebooks and feedback from the mobile station (MS). The benefit of the scheme lies in that the RIS does not require deployment of any active sensors and baseband processing units. During the update process of phase shifters, the combining vector at the MS is also sequentially refined. Simulation results show the performance improvement of the proposed algorithm over the random design scheme, in terms of both positioning accuracy and data rate. Moreover, the performance converges to exhaustive search scheme even in the low signal-to-noise ratio regime.



rate research

Read More

102 - Bei Guo , Renwang Li , Meixia Tao 2021
This paper considers a reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) downlink communication system where hybrid analog-digital beamforming is employed at the base station (BS). We formulate a power minimization problem by jointly optimizing hybrid beamforming at the BS and the response matrix at the RIS, under signal-to-interference-plus-noise ratio (SINR) constraints. The problem is highly challenging due to the non-convex SINR constraints as well as the non-convex unit-modulus constraints for both the phase shifts at the RIS and the analog beamforming at the BS. A penalty-based algorithm in conjunction with the manifold optimization technique is proposed to handle the problem, followed by an individual optimization method with much lower complexity. Simulation results show that the proposed algorithm outperforms the state-of-art algorithm. Results also show that the joint optimization of RIS response matrix and BS hybrid beamforming is much superior to individual optimization.
Upcoming beyond fifth generation (5G) communications systems aim at further enhancing key performance indicators and fully supporting brand new use cases by embracing emerging techniques, e.g., reconfigurable intelligent surface (RIS), integrated communication, localization, and sensing, and mmWave/THz communications. The wireless intelligence empowered by state-of-the-art artificial intelligence techniques has been widely considered at the transceivers, and now the paradigm is deemed to be shifted to the smart control of radio propagation environment by virtue of RISs. In this article, we argue that to harness the full potential of RISs, localization and communication must be tightly coupled. This is in sharp contrast to 5G and earlier generations, where localization was a minor additional service. To support this, we first introduce the fundamentals of RIS mmWave channel modeling, followed by RIS channel state information acquisition and link establishment. Then, we deal with the connection between localization and communications, from a separate and joint perspective.
Reconfigurable intelligent surfaces (RISs), which can deliberately adjust the phase of incident waves, have shown enormous potentials to reconfigure the signal propagation for performance enhancement. In this paper, we investigate the RIS-aided offshore system to provide a cost-effective coverage of high-speed data service. The shipborne RIS is placed offshore to improve the signal quality at the vessels, and the coastal base station is equipped with low-cost reconfigurable reflect-arrays (RRAs), instead of the conventional costly fully digital antenna arrays (FDAAs), to reduce the hardware cost. In order to meet the rate requirements of diversified maritime activities, the effective sum rate (ESR) is studied by jointly optimizing the beamforming scheme and the service time allocated to each vessel. The optimal allocation scheme is derived, and an efficient fixed-point based alternating ascent method is developed to obtain a suboptimal solution to the non-convex beamforming problem. Numerical results show that the ESR is considerably improved with the aid of the RIS, and the proposed scheme using the hardwareefficient RRAs has only a slight performance loss, compared to its FDAA-based counterpart.
105 - Bei Guo , Chenhao Sun , Meixia Tao 2021
Reconfigurable intelligent surfaces (RISs) are able to provide passive beamforming gain via low-cost reflecting elements and hence improve wireless link quality. This work considers two-way passive beamforming design in RIS-aided frequency division duplexing (FDD) systems where the RIS reflection coefficients are the same for downlink and uplink and should be optimized for both directions simultaneously. We formulate a joint optimization of the transmit/receive beamformers at the base station (BS) and the RIS reflection coefficients. The objective is to maximize the weighted sum of the downlink and uplink rates, where the weighting parameter is adjustable to obtain different achievable downlink-uplink rate pairs. We develop an efficient manifold optimization algorithm to obtain a stationary solution. For comparison, we also introduce two heuristic designs based on one-way optimization, namely, time-sharing and phase-averaging. Simulation results show that the proposed manifold-based two-way optimization design significantly enlarges the achievable downlink-uplink rate region compared with the two heuristic designs. It is also shown that phase-averaging is superior to time-sharing when the number of RIS elements is large.
124 - Yifan Liu , Bin Duo , Qingqing Wu 2021
This paper investigates an aerial reconfigurable intelligent surface (RIS)-aided communication system under the probabilistic line-of-sight (LoS) channel, where an unmanned aerial vehicle (UAV) equipped with an RIS is deployed to assist two ground nodes in their information exchange. An optimization problem with the objective of maximizing the minimum average achievable rate is formulated to design the communication scheduling, the RISs phase, and the UAV trajectory. To solve such a non-convex problem, we propose an efficient iterative algorithm to obtain its suboptimal solution. Simulation results show that our proposed design significantly outperforms the existing schemes and provides new insights into the elevation angle and distance trade-off for the UAV-borne RIS communication system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا