No Arabic abstract
A present challenge in testing general relativity (GR) with binary black hole gravitational wave detections is the inability to perform model-dependent tests due to the lack of merger waveforms in beyond-GR theories. In this study, we produce the first numerical relativity binary black hole gravitational waveform in Einstein dilaton Gauss-Bonnet (EDGB) gravity, a higher-curvature theory of gravity with motivations in string theory. We evolve a binary black hole system in order-reduced EDGB gravity, with parameters consistent with GW150914. We focus on the merger portion of the waveform, due to the presence of secular growth in the inspiral phase. We compute mismatches with the corresponding general relativity merger waveform, finding that from a post-inspiral-only analysis, we can constrain the EDGB lengthscale to be $sqrt{alpha_mathrm{GB}} lesssim 11$ km.
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as special cases scalar-tensor theories (and indirectly f(R) theories) as well as models with a scalar field coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact objects with central densities typical of neutron stars cannot exist for certain values of the coupling constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints on the theory than the existence of black hole solutions. This work is a first step in a program to systematically rule out (possibly using Bayesian model selection) theories that are incompatible with astrophysical observations of compact stars.
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field hair, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
Gravitational waves from extreme gravity events such as the coalescence of two black holes in a binary system fill our observable universe, bearing with them the underlying theory of gravity driving their process. One compelling alternative theory of gravity -- known as Einstein-dilaton Gauss-Bonnet gravity motivated by string theory -- describes the presence of an additional dilaton scalar field coupled directly to higher orders of the curvature, effectively describing a fifth force interaction and the emission of scalar dipole radiation between two scalarized black holes. Most previous studies focused on considering only the leading correction to the inspiral portion of the binary black hole waveforms. In our recent paper, we carried out inspiral-merger-ringdown consistency tests in this string-inspired gravity by including corrections to both the inspiral and ringdown portions, as well as those to the mass and spin of remnant black holes, valid to quadratic order in spin. We here extend the analysis by directly computing bounds on the theoretical coupling constant using the full inspiral-merger-ringdown waveform rather than treating the inspiral and merger-ringdown portions separately. We also consider the corrections valid to quartic order in spin to justify the validity of black holes slow-rotation approximation. We find the quasinormal mode corrections to the waveform to be particularly important for high-mass events such as GW170729, in which the dilaton fields small-coupling approximation fails without such effects included. We also show that future space-based and multiband gravitational-wave observations have the potential to go beyond existing bounds on the theory. The bounds presented here are comparable to those found in via the inspiral-merger-ringdown consistency tests.
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curvature-couplings the resulting scalarized black hole solutions are nonlinearly stable. For such small couplings, we show that an elliptic region forms inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that this region remains censored from asymptotic view. However, for coupling values superextremal relative to a given black hole mass, an elliptic region forms exterior to the horizon, implying the exterior Cauchy problem is ill-posed in this regime.