No Arabic abstract
Recent experiments began to explore the topological properties of quench dynamics, i.e. the time evolution following a sudden change in the Hamiltonian, via tomography of quantum gases in optical lattices. In contrast to the well established theory for static band insulators or periodically driven systems, at present it is not clear whether, and how, topological invariants can be defined for a general quench of band insulators. Previous work solved a special case of this problem beautifully using Hopf mapping of two-band Hamiltonians in two dimensions. But it only works for topologically trivial initial state and is hard to generalize to multiband systems or other dimensions. Here we introduce the concept of loop unitary constructed from the unitary time-evolution operator, and show its homotopy invariant fully characterizes the dynamical topology. For two-band systems in two dimensions, we prove that the invariant is precisely equal to the change in the Chern number across the quench regardless of the initial state. We further show that the nontrivial dynamical topology manifests as hedgehog defects in the loop unitary, and also as winding and linking of its eigenvectors along a curve where dynamical quantum phase transition occurs. This opens up a systematic route to classify and characterize quantum quench dynamics.
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian topological systems, and are a key concept in the contemporary study of non-Hermitian topology. Here we report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks, revealed through the biorthogonal chiral displacement, and crosschecked with the dynamic spin textures in the generalized quasimomentum-time domain following a quantum quench. Both detection schemes are robust against symmetry-preserving disorders, and yield consistent results with theoretical predictions. Our experiments are performed far away from any boundaries, and therefore underline non-Bloch topological invariants as intrinsic properties of the system that persist in the thermodynamic limit. Our work sheds new light on the experimental investigation of non-Hermitian topology.
Topological phases of the famous Altland-Zirnbauer (AZ) tenfold classes are defined on the equilibrium ground states. Whether such equilibrium topological phases have universal correspondence to far-from-equilibrium quantum dynamics is a fundamental issue of both theoretical and experimental importance. Here we uncover the universal topological quench dynamics linking to the equilibrium topological phases for the complete AZ tenfold classes, with a general framework being established. We show a fundamental result that a $d$-dimensional topological phase of the tenfold class, with an integer invariant or $mathbb{Z}_{2}$ index defined on high symmetry momenta, is generically characterized by topology reduced to the highest-order band-inversion surfaces located at arbitrary discrete momenta of Brillouin zone. Such dimension-reduced topology is further captured by universal topological patterns emerging in far-from-equilibrium quantum dynamics by quenching the system from trivial phase to the topological regime, rendering the dynamical hallmark of the equilibrium topological phase. This work establishes a universal dynamical characterization for the complete AZ symmetry classes of topological phases, which has broad applications in theory and experiment.
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length scales. The Hamiltonian after the quench is chosen either to preserve or to suddenly break the symmetry which ensures the presence of string order. Depending on which of these two situations arises, string order is either preserved or lost even at infinitesimal times in the thermodynamic limit. The fact that non-local order may be abruptly destroyed, what we call string-order melting, makes it qualitatively different from typical order parameters in the manner of Landau. This situation is thoroughly characterized by means of numerical simulations based on matrix product states algorithms and analytical studies based on a short-time expansion for several simplified models.
A microscopic definition of the thermodynamic entropy in an isolated quantum system must satisfy (i) additivity, (ii) extensivity and (iii) the second law of thermodynamics. We show that the diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, meets the first two requirements and that the third requirement is satisfied if an arbitrary external operation is performed at typical times. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that the Hamiltonian dynamics restricts quantum trajectories under unitary evolution and that the external operation is performed without referring to any particular information about the microscopic state of the system.
We consider a topological superconducting wire and use the string order parameter to investigate the spatiotemporal evolution of the topological order upon a quantum quench across the critical point. We also analyze the propagation of the initially localized Majorana bound states after the quench, in order to examine the connection between the topological order and the unpaired Majorana states, which has been well established at equilibrium but remains illusive in dynamical situations. It is found that after the quench the string order parameters decay over a finite time and that the decaying behavior is universal, independent of the wire length and the final value of the chemical potential (the quenching parameter). It is also found that the topological order is revived repeatedly although the amplitude gradually decreases. Further, the topological order can propagate into the region which was initially in the non-topological state. It is observed that all these behaviors are in parallel and consistent with the propagation and dispersion of the Majorana wave functions. Finally, we propose a local probing method which can measure the non-local topological order.