Do you want to publish a course? Click here

Flat bands and gaps in twisted double bilayer graphene

141   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present electronic structure calculations of twisted double bilayer graphene (TDBG): A tetralayer graphene structure composed of two AB-stacked graphene bilayers with a relative rotation angle between them. Using first-principles calculations, we find that TDBG is semiconducting with a band gap that depends on the twist angle, that can be tuned by an external electric field. The gap is consistent with TDBG symmetry and its magnitude is related to surface effects, driving electron transfer from outer to inner layers. The surface effect competes with an energy upshift of localized states at inner layers, giving rise to the peculiar angle dependence of the band gap, which reduces at low angles. For these low twist angles, the TDBG develops flat bands, in which electrons in the inner layers are localized at the AA regions, as in twisted bilayer graphene.



rate research

Read More

Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alphaapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
Twisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which give a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allows changing the Fermi level and hence the electron density and also allows tuning the interlayer potential, giving further control over band gaps. Here, we demonstrate that by applying hydrostatic pressure, an additional control of the band structure becomes possible due to the change of tunnel couplings between the layers. We find that the flat bands and the gaps separating them can be drastically changed by pressures up to 2 GPa, in good agreement with our theoretical simulations. Furthermore, our measurements suggest that in finite magnetic field due to pressure a topologically non-trivial band gap opens at the charge neutrality point at zero displacement field.
The interplay between interlayer van der Waals interaction and intralayer lattice distortion can lead to structural reconstruction in slightly twisted bilayer graphene (TBG) with the twist angle being smaller than a characteristic angle {theta}c. Experimentally, the {theta}c is demonstrated to be very close to the magic angle ({theta} ~ 1.05{deg}). In this work, we address the transition between reconstructed and unreconstructed structures of the TBG across the magic angle by using scanning tunnelling microscopy (STM). Our experiment demonstrates that both the two structures are stable in the TBG around the magic angle. By applying a STM tip pulse, we show that the two structures can be switched to each other and the bandwidth of the flat bands, which plays a vital role in the emergent strongly correlated states in the magic-angle TBG, can be tuned. The observed tunable lattice reconstruction and bandwidth of the flat bands provide an extra control knob to manipulate the exotic electronic states of the TBG near the magic angle.
Tailoring electron transfer dynamics across solid-liquid interfaces is fundamental to the interconversion of electrical and chemical energy. Stacking atomically thin layers with a very small azimuthal misorientation to produce moire superlattices enables the controlled engineering of electronic band structures and the formation of extremely flat electronic bands. Here, we report a strong twist angle dependence of heterogeneous charge transfer kinetics at twisted bilayer graphene electrodes with the greatest enhancement observed near the magic angle (~1.1 degrees). This effect is driven by the angle-dependent tuning of moire-derived flat bands that modulate electron transfer processes with the solution-phase redox couple. Combined experimental and computational analysis reveals that the variation in electrochemical activity with moire angle is controlled by atomic reconstruction of the moire superlattice at twist angles <2 degrees, and topological defect AA stacking regions produce a large anomalous local electrochemical enhancement that cannot be accounted for by the elevated local density of states alone. Our results introduce moire flat band materials as a distinctively tunable paradigm for mediating electrochemical transformations.
149 - T. Stauber , H. Kohler 2016
The charge susceptibility of twisted bilayer graphene is investigated in the Dirac cone, respectively random-phase approximation. For small enough twist angles $thetalesssim 2^circ$ we find weakly Landau damped interband plasmons, i.~e., collective excitonic modes which exist in the undoped material, with an almost constant energy dispersion. In this regime, the loss function can be described as a Fano resonance and we argue that these excitations arise from the interaction of quasi-localised states with the incident light field. These predictions can be tested by nano-infrared imaging and possible applications include a perfect lens without the need of left-handed materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا