Do you want to publish a course? Click here

Jet Feedback and the Photon Underproduction Crisis in Simba

123   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the impact of black hole jet feedback on the properties of the low-redshift intergalactic medium (IGM) in the SIMBA simulation, with a focus on the Ly$alpha$ forest mean flux decrement $D_A$. Without jet feedback, we confirm the Photon Underproduction Crisis (PUC) in which $Gamma_{rm HI}$ at $z=0$ must be increased by $times6$ over the Haardt & Madau value in order to match the observed $D_{A}$. Turning on jet feedback lowers this discrepancy to $simtimes 2.5$, and additionally using the recent Faucher-Gigu`ere background mostly resolves the PUC, along with producing a flux probability distribution function in accord with observations. The PUC becomes apparent at late epochs ($z lesssim 1$) where the jet and no-jet simulations diverge; at higher redshifts SIMBA reproduces the observed $D_{A}$ with no adjustment, with or without jets. The main impact of jet feedback is to lower the cosmic baryon fraction in the diffuse IGM from 39% to 16% at $z=0$, while increasing the warm-hot intergalactic medium (WHIM) baryon fraction from 30% to 70%; the lowering of the diffuse IGM content directly translates into a lowering of $D_{A}$ by a similar factor. Comparing to the older MUFASA simulation that employs different quenching feedback but is otherwise similar to SIMBA, MUFASA matches $D_{A}$ less well than SIMBA, suggesting that low-redshift measurements of $D_{A}$ and $Gamma_{rm HI}$ could provide constraints on feedback mechanisms. Our results suggest that widespread IGM heating at late times is a plausible solution to the PUC, and that SIMBAs jet AGN feedback model, included to quench massive galaxies, approximately yields this required heating.



rate research

Read More

We examine the statistics of the low-redshift Lyman-alpha forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate required by our simulations to match the observed properties of the low-redshift Lyman-alpha forest is a factor of 5 larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch results in the mean flux decrement of the Lyman-alpha forest being underpredicted by at least a factor of 2 (a 10-sigma discrepancy with observations) and a column density distribution of Lyman-alpha forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must be significantly elevated relative to current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.
We examine the properties of the low-redshift circumgalactic medium (CGM) around star-forming and quenched galaxies in the Simba cosmological hydrodynamic simulations, focusing on comparing HI and metal line absorption to observations from the COS-Halos and COS-Dwarfs surveys. Halo baryon fractions are generally $lesssim 50%$ of the cosmic fraction due to stellar feedback at low masses, and jet-mode AGN feedback at high masses. Baryons and metals in the CGM of quenched galaxies are $gtrsim 90%$ hot gas, while the CGM of star-forming galaxies is more multi-phase. Hot CGM gas has low metallicity, while warm and cool CGM gas have metallicity close to that of galactic gas. Equivalent widths, covering fractions and total path absorption of HI and selected metal lines (MgII, SiIII, CIV and OVI) around a matched sample of Simba star-forming galaxies are mostly consistent with COS-Halos and COS-Dwarfs observations to $lesssim 0.4$~dex, depending on ion and assumed ionising background. Around matched quenched galaxies, absorption in all ions is lower, with HI absorption significantly under-predicted. Metal-line absorption is sensitive to choice of photo-ionising background; assuming recent backgrounds, Simba matches OVI but under-predicts low ions, while an older background matches low ions but under-predicts OVI. Simba reproduces the observed dichotomy of OVI absorption around star forming and quenched galaxies. CGM metals primarily come from stellar feedback, while jet-mode AGN feedback reduces absorption particularly for lower ions.
138 - Daniel Murray , Shivam Goyal , 2017
We present results of hydrodynamic simulations of massive star forming regions with and without protostellar jets. We show that jets change the normalization of the stellar mass accretion rate, but do not strongly affect the dynamics of star formation. In particular, $M_*(t) propto f^2 (t-t_*)^2$ where $f = 1 - f_{rm jet}$ is the fraction of mass accreted onto the protostar, $f_{rm jet}$ is the fraction ejected by the jet, and $(t-t_*)^2$ is the time elapsed since the formation of the first star. The star formation efficiency is nonlinear in time. We find that jets have only a small effect (of order 25%) on the accretion rate onto the protostellar disk (the raw accretion rate). We show that the small scale structure -- the radial density, velocity, and mass accretion profiles are very similar in the jet and no-jet cases. Finally, we show that the inclusion of jets does drive turbulence but only on small (parsec) scales.
We use the Simba cosmological hydrodynamic simulation suite to explore the impact of feedback on the circumgalactic medium (CGM) and intergalactic medium (IGM) around $2 leq z leq 3$ quasars. We identify quasars in Simba as the most rapidly-accreting black holes, and show that they are well-matched in bolometric luminosity and correlation strength to real quasars. We extract Lyman-alpha (Ly-a) absorption in spectra passing at different transverse distances (10 kpc $lesssim b lesssim$ 10 Mpc) around those quasars, and compare to observations of the mean Ly-a absorption profile. The observations are well reproduced, except within 100 kpc from the foreground quasar, where Simba overproduces absorption; this could potentially be mitigated by including ionisation from the quasar itself. By comparing runs with different feedback modules activated, we find that (mechanical) AGN feedback has little impact on the surrounding CGM even around these most highly luminous black holes, while stellar feedback has a significant impact. By further investigating thermodynamic and kinematic properties of CGM gas, we find that stellar feedback, and not AGN feedback, is the primary physical driver in determining the average properties of the CGM around $zsim 2-3$ quasars. We also compare our results with previous works, and find that Simba predicts much more absorption within 100 kpc than the Nyx and Illustris simulations, showing that the Ly-a absorption profile can be a powerful constraint on simulations. Instruments such as VLT-MUSE and upcoming surveys (e.g., WEAVE and DESI) promise to further improve such constraints.
We present new radio and optical images of the nearest radio galaxy Centaurus A and its host galaxy NGC 5128. We focus our investigation on the northern transition region, where energy is transported from the ~5 kpc (~5 arcmin) scales of the Northern Inner Lobe (NIL) to the ~30 kpc (~30 arcmin) scales of the Northern Middle Lobe (NML). Our Murchison Widefield Array observations at 154 MHz and our Parkes radio telescope observations at 2.3 GHz show diffuse radio emission connecting the NIL to the NML, in agreement with previous Australia Telescope Compact Array observations at 1.4 GHz. Comparison of these radio data with our widefield optical emission line images show the relationship between the NML radio emission and the ionised filaments that extend north from the NIL, and reveal a new ionised filament to the east, possibly associated with a galactic wind. Our deep optical images show clear evidence for a bipolar outflow from the central galaxy extending to intermediate scales, despite the non-detection of a southern radio counterpart to the NML. Thus, our observational overview of Centaurus A reveals a number of features proposed to be associated with AGN feedback mechanisms, often cited as likely to have significant effects in galaxy evolution models. As one of the closest galaxies to us, Centaurus A therefore provides a unique laboratory to examine feedback mechanisms in detail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا