No Arabic abstract
We present new radio and optical images of the nearest radio galaxy Centaurus A and its host galaxy NGC 5128. We focus our investigation on the northern transition region, where energy is transported from the ~5 kpc (~5 arcmin) scales of the Northern Inner Lobe (NIL) to the ~30 kpc (~30 arcmin) scales of the Northern Middle Lobe (NML). Our Murchison Widefield Array observations at 154 MHz and our Parkes radio telescope observations at 2.3 GHz show diffuse radio emission connecting the NIL to the NML, in agreement with previous Australia Telescope Compact Array observations at 1.4 GHz. Comparison of these radio data with our widefield optical emission line images show the relationship between the NML radio emission and the ionised filaments that extend north from the NIL, and reveal a new ionised filament to the east, possibly associated with a galactic wind. Our deep optical images show clear evidence for a bipolar outflow from the central galaxy extending to intermediate scales, despite the non-detection of a southern radio counterpart to the NML. Thus, our observational overview of Centaurus A reveals a number of features proposed to be associated with AGN feedback mechanisms, often cited as likely to have significant effects in galaxy evolution models. As one of the closest galaxies to us, Centaurus A therefore provides a unique laboratory to examine feedback mechanisms in detail.
We implement a steady, one-dimensional flow model for the X-ray jet of Centaurus A in which entrainment of stellar mass loss is the primary cause of dissipation. Using over 260 ks of new and archival Chandra/ACIS data, we have constrained the temperature, density and pressure distributions of gas in the central regions of the host galaxy of Centaurus A, and so the pressure throughout the length of its jet. The model is constrained by the observed profiles of pressure and jet width, and conserves matter and energy, enabling us to estimate jet velocities, and hence all the other flow properties. Invoking realistic stellar populations within the jet, we find that the increase in its momentum flux exceeds the net pressure force on the jet unless only about one half of the total stellar mass loss is entrained. For self-consistent models, the bulk speed only falls modestly, from ~0.67c to ~0.52c over the range of 0.25-5.94 kpc from the nucleus. The sonic Mach number varies between ~5.3 and 3.6 over this range.
We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking weather ribbon of Far-UV and H$alpha$ emission, which extends more than 35 kpc northeast of the galaxy. The ribbon is associated with a knotty ridge of radio/X-ray emission, and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect Far-UV emission from the galaxys central dust lane. Combining this with previous radio and Far-IR measurements, we infer an active starburst in the central galaxy, which is currently forming stars at $sim 2 M_{sun}$yr$^{-1}$, and has been doing so for 50-100Myr. If the wind from this starburst is enhanced by energy and mass driven out from the AGN, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the winds encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.
Galaxy merging is widely accepted to be a key driving factor in galaxy formation and evolution, while the feedback from AGN is thought to regulate the BH-bulge coevolution and the star formation process. In this context, we focused on 1SXPSJ050819.8+172149, a local (z=0.0175) Seyfert 1.9 galaxy (L_bol~4x10^43 ergs/s). The source belongs to an IR-luminous interacting pair of galaxies, characterized by a luminosity for the whole system (due to the combination of star formation and accretion) of log(L_IR/L_sun)=11.2. We present the first detailed description of the 0.3-10keV spectrum of 1SXPSJ050819.8+172149, monitored by Swift with 9 pointings performed in less than 1 month. The X-ray emission of 1SXPSJ050819.8+172149 is analysed by combining all the Swift pointings, for a total of ~72ks XRT net exposure. The averaged Swift-BAT spectrum from the 70-month survey is also analysed. The slope of the continuum is ~1.8, with an intrinsic column density NH~2.4x10^22 cm-2, and a deabsorbed luminosity L(2-10keV)~4x10^42 ergs/s. Our observations provide a tentative (2.1sigma) detection of a blue-shifted FeXXVI absorption line (rest-frame E~7.8 keV), suggesting the discovery for a new candidate powerful wind in this source. The physical properties of the outflow cannot be firmly assessed, due to the low statistics of the spectrum and to the observed energy of the line, too close to the higher boundary of the Swift-XRT bandpass. However, our analysis suggests that, if the detection is confirmed, the line could be associated with a high-velocity (vout~0.1c) outflow most likely launched within 80r_S. To our knowledge this is the first detection of a previously unknown ultrafast wind with Swift. The high NH suggested by the observed equivalent width of the line (EW~ -230eV, although with large uncertainties), would imply a kinetic output strong enough to be comparable to the AGN bolometric luminosity.
We employ optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) combined with X-ray and radio data to study the highly-ionized gas (HIG) phase of the feedback in a sample of five local nearby Active Galactic Nuclei (AGN). Thanks to the superb field of view and sensitivity of MUSE, we found that the HIG, traced by the coronal line [FeVII] $lambda$6089, extends to scales not seen before, from 700 pc in Circinus and up to ~2 kpc in NGC5728 and NGC3393. The gas morphology is complex, following closely the radio jet and the X-ray emission. Emission line ratios suggest gas excitation by shocks produced by the passage of the radio jet. This scenario is further supported by the physical conditions derived for the HIG, stressing the importance of the mechanical feedback in AGN with low-power radio jets.
It has long been suspected that powerful radio sources may lower the efficiency with which stars form from the molecular gas in their host galaxy, but so far, alternative mechanisms, in particular related to the stellar mass distribution in the massive bulges of their host galaxies, are not ruled out. We present new ALMA CO(1-0) interferometry of cold molecular gas in the nearby (z=0.0755), massive (M_stellar=4x10^11 M_sun), isolated, late-type spiral galaxy 2MASSX J23453269-044925, which is outstanding for having two pairs of powerful, giant radio jets, and a bright X-ray halo. The molecular gas is in a massive (M_gas=2x10^10 M_sun), 24 kpc wide, rapidly rotating ring, which is associated with the inner stellar disk. Broad (FWHM=70-180 km s^-1) lines with complex profiles associated with the radio source are seen over large regions in the ring, indicating gas velocities that are high enough to keep the otherwise marginally Toomre-stable gas from fragmenting into gravitationally bound, star-forming clouds. About 1-2% of the jet kinetic energy are required to power these motions. Resolved star-formation rate surface densities fall factors 50-75 short of expectations from the Kennicutt-Schmidt law of star-forming galaxies, and near gas-rich early-type galaxies with signatures of star formation lowered by jet feedback. We argue that radio AGN feedback is the only plausible mechanism to explain the low star-formation rates in this galaxy. Previous authors have already noted that the X-ray halo of J2345-0449 implies a baryon fraction near the cosmic average, which is very high for a galaxy. We contrast this finding with other, equally massive baryon-rich spiral galaxies without prominent radio sources. Most of the baryons in these galaxies are in stars, not in the halos. We also discuss the implications of our results for our general understanding of AGN feedback in massive galaxies.