Do you want to publish a course? Click here

Topological Gaseous Plasmon Polariton in Realistic Plasma

209   0   0.0 ( 0 )
 Added by Jeffrey Parker
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nontrivial topology in bulk matter has been linked with the existence of topologically protected interfacial states. We show that a gaseous plasmon polariton (GPP), an electromagnetic surface wave existing at the boundary of magnetized plasma and vacuum, has a topological origin that arises from the nontrivial topology of magnetized plasma. Because a gaseous plasma cannot sustain a sharp interface with discontinuous density, one must consider a gradual density falloff with scale length comparable or longer than the wavelength of the wave. We show that the GPP may be found within a gapped spectrum in present-day laboratory devices, suggesting that platforms are currently available for experimental investigation of topological wave physics in plasmas.



rate research

Read More

Exact four-photon resonance of collinear planar laser pulses is known to be prohibited by the classical dispersion law of electromagnetic waves in plasma. We show here that the renormalization produced by an arbitrarily small relativistic electron nonlinearity removes this prohibition. The laser frequency shifts in collinear resonant four-photon scattering increase with laser intensities. For laser pulses of frequencies much greater than the electron plasma frequency, the shifts can also be much greater than the plasma frequency and even nearly double the input laser frequency at still small relativistic electron nonlinearities. This may enable broad range tunable lasers of very high frequencies and powers. Since the four-photon scattering does not rely on the Langmuir wave, which is very sensitive to plasma homogeneity, such lasers would also be able to operate at much larger plasma inhomogeneities than lasers based on stimulated Raman scattering in plasma.
We use computational approaches to explore the role of a high-refractive-index dielectric TiO2 grating with deep subwavelength thickness on InSb as a tunable coupler for THz surface plasmons. We find a series of resonances as the grating couples a normally-incident THz wave to standing surface plasmon waves on both thin and thick InSb layers. In a marked contrast with previously-explored metallic gratings, we observe the emergence of a much stronger additional resonance. The mechanism of this giant plasmonic resonance is well interpreted by the dispersion of surface plasmon excited in the airTiO2InSb trilayer system. We demonstrate that both the frequency and the intensity of the giant resonance can be tuned by varying dielectric grating parameters, providing more flexible tunability than metallic gratings. The phase and amplitude of the normally-incident THz wave are spatially modulated by the dielectric grating to optimize the surface plasmon excitation. The giant surface plasmon resonance gives rise to strong enhancement of the electric field above the grating structure, which can be useful in sensing and spectroscopy applications.
The collective dynamics of annulus dusty plasma formed between a co-centric conducting (non-conducting) disk and ring configuration is studied in a strongly magnetized radio-frequency (rf) discharge. A superconducting electromagnet is used to introduce a homogeneous magnetic field to the dusty plasma medium. In absence of the magnetic field, dust grains exhibit thermal motion around their equilibrium position. The dust grains start to rotate in anticlockwise direction with increasing magnetic field (B $>$ 0.02 T), and the constant value of the angular frequency at various strengths of magnetic field confirms the rigid body rotation. The angular frequency of dust grains linearly increases up to a threshold magnetic field (B $>$ 0.6 T) and after that its value remains nearly constant in a certain range of magnetic field. Further increase in magnetic field (B $>$ 1 T) lowers the angular frequency. Low value of angular frequency is expected by reducing the width of annulus dusty plasma or the input rf power. The azimuthal ion drag force due to the magnetic field is assumed to be the energy source which drives the rotational motion. The resultant radial electric field in the presence of magnetic field determines the direction of rotation. The variation of floating (plasma) potential across the annular region at given magnetic field explains the rotational properties of the annulus dusty plasma in the presence of magnetic field.
Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
Polaritons are quasiparticles arising from the strong coupling of electromagnetic waves in cavities and dipolar oscillations in a material medium. In this framework, localized surface plasmon in metallic nanoparticles defining optical nanocavities have attracted increasing interests in the last decade. This interest results from their sub-diffraction mode volume, which offers access to extremely high photonic densities by exploiting strong scattering cross-sections. However, high absorption losses in metals have hindered the observation of collective coherent phenomena, such as condensation. In this work we demonstrate the formation of a non-equilibrium room temperature plasmon-exciton-polariton condensate with a long range spatial coherence, extending a hundred of microns, well over the excitation area, by coupling Frenkel excitons in organic molecules to a multipolar mode in a lattice of plasmonic nanoparticles. Time-resolved experiments evidence the picosecond dynamics of the condensate and a sizeable blueshift, thus measuring for the first time the effect of polariton interactions in plasmonic cavities. Our results pave the way to the observation of room temperature superfluidity and novel nonlinear phenomena in plasmonic systems, challenging the common belief that absorption losses in metals prevent the realization of macroscopic quantum states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا