No Arabic abstract
Exact four-photon resonance of collinear planar laser pulses is known to be prohibited by the classical dispersion law of electromagnetic waves in plasma. We show here that the renormalization produced by an arbitrarily small relativistic electron nonlinearity removes this prohibition. The laser frequency shifts in collinear resonant four-photon scattering increase with laser intensities. For laser pulses of frequencies much greater than the electron plasma frequency, the shifts can also be much greater than the plasma frequency and even nearly double the input laser frequency at still small relativistic electron nonlinearities. This may enable broad range tunable lasers of very high frequencies and powers. Since the four-photon scattering does not rely on the Langmuir wave, which is very sensitive to plasma homogeneity, such lasers would also be able to operate at much larger plasma inhomogeneities than lasers based on stimulated Raman scattering in plasma.
We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into plasma and create turbulence. In the context of the evolution of the ISM, the shocks play the role of supernova remnant shocks and the core represents the ionized interstellar medium. We consider the effects of both pre-existing and self-generating magnetic fields and study the evolution of the system by means of two-dimensional numerical simulations. We find that the evolution of the turbulent core is generally, subsonic with rms-Mach number $M_tapprox 0.2$. We observe an isotropic, turbulent velocity field with an inertial range power spectra of $P(k)propto k^{-2.3}$. We account for the effects of self-magnetization and find that the resulting magnetic field has characteristic strength $approx 3times 10^{4}$ G. The corresponding plasma beta is $approx 1times 10^{4}$--$1times 10^{5}$, indicating that the magnetic field does not play an important role in the dynamical evolution of the system. The natural extension of this work is to study the system evolution in three-dimensions, with various laser drive configurations, and targets with shells and cores of different masses. The latter modification may help to increase the turbulent intensity and possibly create transonic turbulence. One of the key challenges is to obtain transonic turbulent conditions in a quasi-steady state environment.
Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the energy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided.
We describe a laser-plasma platform for photon-photon collision experiments to measure fundamental quantum electrodynamic processes such as the linear Breit-Wheeler process with real photons. The platform has been developed using the Gemini laser facility at the Rutherford Appleton Laboratory. A laser wakefield accelerator and a bremsstrahlung convertor are used to generate a collimated beam of photons with energies of hundreds of MeV, that collide with keV x-ray photons generated by a laser heated plasma target. To detect the pairs generated by the photon-photon collisions, a magnetic transport system has been developed which directs the pairs onto scintillation-based and hybrid silicon pixel single particle detectors. We present commissioning results from an experimental campaign using this laser-plasma platform for photon-photon physics, demonstrating successful generation of both photon sources, characterisation of the magnetic transport system and calibration of the single particle detectors, and discuss the feasibility of this platform for the observation of the Breit-Wheeler process. The design of the platform will also serve as the basis for the investigation of strong-field quantum electrodynamic processes such as the nonlinear Breit-Wheeler and the Trident process, or eventually, photon-photon scattering.
An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ~1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ~10 PW.
Extreme states of matter exist throughout the universe e.g. inside planetary cores, stars or astrophysical jets. Such conditions are generated in the laboratory in the interaction of powerful lasers with solids, and their evolution can be probed with femtosecond precision using ultra-short X-ray pulses to study laboratory astrophysics, laser-fusion research or compact particle acceleration. X-ray scattering (SAXS) patterns and their asymmetries occurring at X-ray energies of atomic bound-bound transitions contain information on the volumetric nanoscopic distribution of density, ionization and temperature. Buried heavy ion structures in high intensity laser irradiated solids expand on the nanometer scale following heat diffusion, and are heated to more than 2 million Kelvin. These experiments demonstrate resonant SAXS with the aim to better characterize dynamic processes in extreme laboratory plasmas.