Do you want to publish a course? Click here

Phase diagram of the spin-1/2 Kitaev-Gamma chain and emergent SU(2) symmetry

190   0   0.0 ( 0 )
 Added by Wang Yang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the phase diagram of a one-dimensional version of the Kitaev spin-1/2 model with an extra ``$Gamma$-term, using analytical, density matrix renormalization group and exact diagonalization methods. Two intriguing phases are found. In the gapless phase, although the exact symmetry group of the system is discrete, the low energy theory is described by an emergent SU(2)$_1$ Wess-Zumino-Witten (WZW) model. On the other hand, the spin-spin correlation functions exhibit SU(2) breaking prefactors, even though the exponents and the logarithmic corrections are consistent with the SU(2)$_1$ predictions. A modified nonabelian bosonization formula is proposed to capture such exotic emergent ``partial SU(2) symmetry. In the ordered phase, there is numerical evidence for an $O_hrightarrow D_4$ spontaneous symmetry breaking.



rate research

Read More

94 - Wang Yang , Alberto Nocera , 2020
A central question on Kitaev materials is the effects of additional couplings on the Kitaev model which is proposed to be a candidate for realizing topological quantum computations. However, two spatial dimension typically suffers the difficulty of lacking controllable approaches. In this work, using a combination of powerful analytical and numerical methods available in one dimension, we perform a comprehensive study on the phase diagram of a one-dimensional version of the spin-1/2 Kitaev-Heisenberg-Gamma model in its full parameter space. A strikingly rich phase diagram is found with nine distinct phases, including four Luttinger liquid phases, a ferromagnetic phase, a Neel ordered phase, an ordered phase of distorted-spiral spin alignments, and two ordered phase which both break a $D_3$ symmetry albeit in different ways, where $D_3$ is the dihedral group of order six. Our work paves the way for studying one-dimensional Kitaev materials and may provide hints to the physics in higher dimensional situations.
A minimal Kitaev-Gamma model has been recently investigated to understand various Kitaev systems. In the one-dimensional Kitaev-Gamma chain, an emergent SU(2)$_1$ phase and a rank-1 spin ordered phase with $O_hrightarrow D_4$ symmetry breaking were identified using non-Abelian bosonization and numerical techniques. However, puzzles near the antiferromagnetic Kitaev region with finite Gamma interaction remained unresolved. Here we focus on this parameter region and find that there are two new phases, namely, a rank-1 ordered phase with an $O_hrightarrow D_3$ symmetry breaking, and a peculiar Kitaev phase. Remarkably, the $O_hrightarrow D_3$ symmetry breaking corresponds to the classical magnetic order, but appears in a region very close to the antiferromagnetic Kitaev point where the quantum fluctuations are presumably very strong. In addition, a two-step symmetry breaking $O_hrightarrow D_{3d}rightarrow D_3$ is numerically observed as the length scale is increased: At short and intermediate length scales, the system behaves as having a rank-2 spin nematic order with $O_hrightarrow D_{3d}$ symmetry breaking; and at long distances, time reversal symmetry is further broken leading to the $O_hrightarrow D_3$ symmetry breaking. Finally, there is no numerical signature of spin orderings nor Luttinger liquid behaviors in the Kitaev phase whose nature is worth further studies.
We have measured the specific heat of the S = 1/2 alternating Heisenberg antiferromagnetic chain compound pentafluorophenyl nitronyl nitroxide in magnetic fields using a single crystal and powder. A sharp peak due to field-induced magnetic ordering (FIMO) is observed in both samples. The H-T phase boundary of the FIMO of the single crystal is symmetric with respect to the central field of the gapless field region HC1 < H < HC2, whereas it is distorted for the powder whose ordering temperatures are lower. An analysis employing calculations based on the finite temperature density matrix renormalization group indicates the possibility of novel incommensurate ordering due to frustration in the powder around the central field.
We present the results of the magnetization and dielectric constant measurements on untwinned single crystal samples of the frustrated S=1/2 chain cuprate LiCu_2O_2. Novel magnetic phase transitions were observed. A spin flop transition of the spiral spin plane was observed for the field orientations H||a,b. The second magnetic transition was observed at H~15 T for all three principal field directions. This high field magnetic phase is discussed as a collinear spin-modulated phase which is expected for an S=1/2 nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic chain system.
Recently, it has been proposed that higher-spin analogues of the Kitaev interactions $K>0$ may also occur in a number of materials with strong Hunds and spin-orbit coupling. In this work, we use Lanczos diagonalization and density matrix renormalization group methods to investigate numerically the $S=1$ Kitaev-Heisenberg model. The ground-state phase diagram and quantum phase transitions are investigated by employing local and nonlocal spin correlations. We identified two ordered phases at negative Heisenberg coupling $J<0$: a~ferromagnetic phase with $langle S_i^zS_{i+1}^zrangle>0$ and an intermediate left-left-right-right phase with $langle S_i^xS_{i+1}^xrangle eq 0$. A~quantum spin liquid is stable near the Kitaev limit, while a topological Haldane phase is found for $J>0$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا