Do you want to publish a course? Click here

Comprehensive study of the phase diagram of the spin-1/2 Kitaev-Heisenberg-Gamma chain

95   0   0.0 ( 0 )
 Added by Wang Yang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A central question on Kitaev materials is the effects of additional couplings on the Kitaev model which is proposed to be a candidate for realizing topological quantum computations. However, two spatial dimension typically suffers the difficulty of lacking controllable approaches. In this work, using a combination of powerful analytical and numerical methods available in one dimension, we perform a comprehensive study on the phase diagram of a one-dimensional version of the spin-1/2 Kitaev-Heisenberg-Gamma model in its full parameter space. A strikingly rich phase diagram is found with nine distinct phases, including four Luttinger liquid phases, a ferromagnetic phase, a Neel ordered phase, an ordered phase of distorted-spiral spin alignments, and two ordered phase which both break a $D_3$ symmetry albeit in different ways, where $D_3$ is the dihedral group of order six. Our work paves the way for studying one-dimensional Kitaev materials and may provide hints to the physics in higher dimensional situations.



rate research

Read More

We study the phase diagram of a one-dimensional version of the Kitaev spin-1/2 model with an extra ``$Gamma$-term, using analytical, density matrix renormalization group and exact diagonalization methods. Two intriguing phases are found. In the gapless phase, although the exact symmetry group of the system is discrete, the low energy theory is described by an emergent SU(2)$_1$ Wess-Zumino-Witten (WZW) model. On the other hand, the spin-spin correlation functions exhibit SU(2) breaking prefactors, even though the exponents and the logarithmic corrections are consistent with the SU(2)$_1$ predictions. A modified nonabelian bosonization formula is proposed to capture such exotic emergent ``partial SU(2) symmetry. In the ordered phase, there is numerical evidence for an $O_hrightarrow D_4$ spontaneous symmetry breaking.
Recently, it has been proposed that higher-spin analogues of the Kitaev interactions $K>0$ may also occur in a number of materials with strong Hunds and spin-orbit coupling. In this work, we use Lanczos diagonalization and density matrix renormalization group methods to investigate numerically the $S=1$ Kitaev-Heisenberg model. The ground-state phase diagram and quantum phase transitions are investigated by employing local and nonlocal spin correlations. We identified two ordered phases at negative Heisenberg coupling $J<0$: a~ferromagnetic phase with $langle S_i^zS_{i+1}^zrangle>0$ and an intermediate left-left-right-right phase with $langle S_i^xS_{i+1}^xrangle eq 0$. A~quantum spin liquid is stable near the Kitaev limit, while a topological Haldane phase is found for $J>0$.
A minimal Kitaev-Gamma model has been recently investigated to understand various Kitaev systems. In the one-dimensional Kitaev-Gamma chain, an emergent SU(2)$_1$ phase and a rank-1 spin ordered phase with $O_hrightarrow D_4$ symmetry breaking were identified using non-Abelian bosonization and numerical techniques. However, puzzles near the antiferromagnetic Kitaev region with finite Gamma interaction remained unresolved. Here we focus on this parameter region and find that there are two new phases, namely, a rank-1 ordered phase with an $O_hrightarrow D_3$ symmetry breaking, and a peculiar Kitaev phase. Remarkably, the $O_hrightarrow D_3$ symmetry breaking corresponds to the classical magnetic order, but appears in a region very close to the antiferromagnetic Kitaev point where the quantum fluctuations are presumably very strong. In addition, a two-step symmetry breaking $O_hrightarrow D_{3d}rightarrow D_3$ is numerically observed as the length scale is increased: At short and intermediate length scales, the system behaves as having a rank-2 spin nematic order with $O_hrightarrow D_{3d}$ symmetry breaking; and at long distances, time reversal symmetry is further broken leading to the $O_hrightarrow D_3$ symmetry breaking. Finally, there is no numerical signature of spin orderings nor Luttinger liquid behaviors in the Kitaev phase whose nature is worth further studies.
By using the infinite time-evolving block decimation, we study quantum fidelity and entanglement entropy in the spin-1/2 Heisenberg alternating chain under an external magnetic field. The effects of the magnetic field on the fidelity are investigated, and its relation with the quantum phase transition (QPT) is analyzed. The phase diagram of the model is given accordingly, which supports the Haldane phase, the singlet-dimer phase, the Luttinger liquid phase and the paramagnetic phase. The scaling of entanglement entropy in the gapless Luttinger liquid phase is studied, and the central charge c = 1 is obtained. We also study the relationship between the quantum coherence, string order parameter and QPTs. Results obtained from these quantum information observations are consistent with the previous reports.
306 - Satoshi Okamoto 2012
The global phase diagram of a doped Kitaev-Heisenberg model is studied using an SU(2) slave-boson mean-field method. Near the Kitaev limit, p-wave superconducting states which break the time-reversal symmetry are stabilized as reported by You {it et al.} [Phys. Rev. B {bf 86}, 085145 (2012)] irrespective of the sign of the Kitaev interaction. By further doping, a d-wave superconducting state appears when the Kitaev interaction is antiferromagnetic, while another p-wave superconducting state appears when the Kitaev interaction is ferromagnetic. This p-wave superconducting state does not break the time-reversal symmetry as reported by Hyart {it et al.} [Phys. Rev. B {bf 85}, 140510 (2012)], and such a superconducting state also appears when the antiferromagnetic Kitaev interaction and the ferromagnetic Heisenberg interaction compete. This work, thus, demonstrates the clear difference between the antiferromagnetic Kitaev model and the ferromagnetic Kitaev model when carriers are doped while these models are equivalent in the undoped limit, and how novel superconducting states emerge when the Kitaev interaction and the Heisenberg interaction compete.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا