Do you want to publish a course? Click here

Combinatorial aspects of the Sachdev-Ye-Kitaev model

73   0   0.0 ( 0 )
 Added by Romain Pascalie
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Sachdev-Ye-Kitaev (SYK) model is a model of $q$ interacting fermions whose large N limit is dominated by melonic graphs. In this review we first present a diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs. Gross and Rosenhaus have then proposed a generalization of the SYK model which involves fermions with different flavors. In terms of Feynman graphs, these flavors can be seen as reminiscent of the colors used in random tensor theory. Applying modern tools from random tensors to such a colored SYK model, all leading and next-to-leading orders diagrams of the 2-point and 4-point functions in the large $N$ expansion can be identified. We then study the effect of non-Gaussian average over the random couplings in a complex, colored version of the SYK model. Using a Polchinski-like equation and random tensor Gaussian universality, we show that the effect of this non-Gaussian averaging leads to a modification of the variance of the Gaussian distribution of couplings at leading order in $N$. We then derive the form of the effective action to all orders.



rate research

Read More

We describe numerous properties of the Sachdev-Ye-Kitaev model for complex fermions with $Ngg 1$ flavors and a global U(1) charge. We provide a general definition of the charge in the $(G,Sigma)$ formalism, and compute its universal relation to the infrared asymmetry of the Green function. The same relation is obtained by a renormalization theory. The conserved charge contributes a compact scalar field to the effective action, from which we derive the many-body density of states and extract the charge compressibility. We compute the latter via three distinct numerical methods and obtain consistent results. Finally, we present a two dimensional bulk picture with free Dirac fermions for the zero temperature entropy.
We present a detailed quantitative analysis of spectral correlations in the Sachdev-Ye-Kitaev (SYK) model. We find that the deviations from universal Random Matrix Theory (RMT) behavior are due to a small number of long-wavelength fluctuations from one realization of the ensemble to the next one. These modes can be parameterized effectively in terms of Q-Hermite orthogonal polynomials, the main contribution being the scale fluctuations for which we give a simple estimate. Our numerical results for $N=32$ show that only the lowest eight polynomials are needed to eliminate the nonuniversal part of the spectral fluctuations. The covariance matrix of the coefficients of this expansion is obtained analytically from low-order double-trace moments. We evaluate the covariance matrix of the first six moments and find that it agrees with the numerics. We also analyze the spectral correlations using a nonlinear $sigma$-model, which is derived through a Fierz transformation, and evaluate the one and two-point spectral correlator to two-loop order. The wide correlator is given by the sum of the universal RMT result and corrections whose lowest-order term corresponds to scale fluctuations. However, the loop expansion of the $sigma$-model results in an ill-behaved expansion of the resolvent, and it gives universal RMT fluctuations not only for $q=4$ but also for the $q=2$ SYK model while the correct result in this case should have been Poisson statistics. We analyze the number variance and spectral form factor for $N=32$ and $q=4$ numerically. We show that the quadratic deviation of the number variance for large energies appears as a peak for small times in the spectral form factor. After eliminating the long-wavelength fluctuations, we find quantitative agreement with RMT up to an exponentially large number of level spacings or exponentially short times, respectively.
75 - V. Bonzom , V. Nador , A. Tanasa 2019
Various tensor models have been recently shown to have the same properties as the celebrated Sachdev-Ye-Kitaev (SYK) model. In this paper we study in detail the diagrammatics of two such SYK-like tensor models: the multi-orientable (MO) model which has an $U(N) times O(N) times U(N)$ symmetry and a quartic $O(N)^3$-invariant model whose interaction has the tetrahedral pattern. We show that the Feynman graphs of the MO model can be seen as the Feynman graphs of the $O(N)^3$-invariant model which have an orientable jacket. We then present a diagrammatic toolbox to analyze the $O(N)^3$-invariant graphs. This toolbox allows for a simple strategy to identify all the graphs of a given order in the $1/N$ expansion. We apply it to the next-to-next-to-leading and next-to-next-to-next-to-leading orders which are the graphs of degree $1$ and $3/2$ respectively.
We consider the graphs involved in the theoretical physics model known as the colored Sachdev-Ye-Kitaev (SYK) model. We study in detail their combinatorial properties at any order in the so-called $1/N$ expansion, and we enumerate these graphs asymptotically. Because of the duality between colored graphs involving $q+1$ colors and colored triangulations in dimension $q$, our results apply to the asymptotic enumeration of spaces that generalize unicellular maps - in the sense that they are obtained from a single building block - for which a higher-dimensional generalization of the genus is kept fixed.
Many-body chaos has emerged as a powerful framework for understanding thermalization in strongly interacting quantum systems. While recent analytic advances have sharpened our intuition for many-body chaos in certain large $N$ theories, it has proven challenging to develop precise numerical tools capable of exploring this phenomenon in generic Hamiltonians. To this end, we utilize massively parallel, matrix-free Krylov subspace methods to calculate dynamical correlators in the Sachdev-Ye-Kitaev (SYK) model for up to $N = 60$ Majorana fermions. We begin by showing that numerical results for two-point correlation functions agree at high temperatures with dynamical mean field solutions, while at low temperatures finite-size corrections are quantitatively reproduced by the exactly solvable dynamics of near extremal black holes. Motivated by these results, we develop a novel finite-size rescaling procedure for analyzing the growth of out-of-time-order correlators (OTOCs). We verify that this procedure accurately determines the Lyapunov exponent, $lambda$, across a wide range in temperatures, including in the regime where $lambda$ approaches the universal bound, $lambda = 2pi/beta$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا