Do you want to publish a course? Click here

The friction of tilted skates on ice

108   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The friction felt by a speed skater is calculated as function of the velocity and tilt angle of the skate. This calculation is an extension of the more common theory of friction of upright skates. Not only in rounding a curve the skate has to be tilted, but also in straightforward skating small tilt angles occur, which turn out to be of noticeable influence on the friction. As for the upright skate the friction remains fairly insensitive of the velocities occurring in speed skating.



rate research

Read More

Small non-spherical particles settling in a quiescent fluid tend to orient so that their broad side faces down, because this is a stable fixed point of their angular dynamics at small particle Reynolds number. Turbulence randomises the orientations to some extent, and this affects the reflection patterns of polarised light from turbulent clouds containing ice crystals. An overdamped theory predicts that turbulence-induced fluctuations of the orientation are very small when the settling number Sv (a dimensionless measure of the settling speed) is large. At small Sv, by contrast, the overdamped theory predicts that turbulence randomises the orientations. This overdamped theory neglects the effect of particle inertia. Therefore we consider here how particle inertia affects the orientation of small crystals settling in turbulent air. We find that it can significantly increase the orientation variance, even when the Stokes number St (a dimensionless measure of particle inertia) is quite small. We identify different asymptotic parameter regimes where the tilt-angle variance is proportional to different inverse powers of Sv. We estimate parameter values for ice crystals in turbulent clouds and show that they cover several of the identified regimes. The theory predicts how the degree of alignment depends on particle size, shape and turbulence intensity, and that the strong horizontal alignment of small crystals is only possible when the turbulent energy dissipation is weak, of the order of $1,$cm$^2$/s$^3$ or less.
For a pendant drop whose contact line is a circle of radius $r_0$, we derive the relation $mgsinalpha={piover2}gamma r_0,(costheta^{rm min}-costheta^{rm max})$ at first order in the Bond number, where $theta^{rm min}$ and $theta^{rm max}$ are the contact angles at the back (uphill) and at the front (downhill), $m$ is the mass of the drop and $gamma$ the surface tension of the liquid. The Bond (or Eotvos) number is taken as $Bo=mg/(2r_0gamma)$. The tilt angle $alpha$ may increase from $alpha=0$ (sessile drop) to $alpha=pi/2$ (drop pinned on vertical wall) to $alpha=pi$ (drop pendant from ceiling). The focus will be on pendant drops with $alpha=pi/2$ and $alpha=3pi/4$. The drop profile is computed exactly, in the same approximation. Results are compared with surface evolver simulations, showing good agreement up to about $Bo=1.2$, corresponding for example to hemispherical water droplets of volume up to about $50,mu$L. An explicit formula for each contact angle $theta^{rm min}$ and $theta^{rm max}$ is also given and compared with the almost exact surface evolver values.
A fluid droplet located on a super-hydrophobic surface makes contact with the surface only at small isolated regions, and is mostly in contact with the surrounding air. As a result, a fluid in motion near such a surface experiences very low friction, and super-hydrophobic surfaces display strong drag-reduction in the laminar regime. Here we consider theoretically a super-hydrophobic surface composed of circular posts (so called fakir geometry) located on a planar rectangular lattice. Using a superposition of point forces with suitably spatially-dependent strength, we derive the effective surface slip length for a planar shear flow on such a fakir surface as the solution to an infinite series of linear equations. In the asymptotic limit of small surface coverage by the posts, the series can be interpreted as Riemann sums, and the slip length can be obtained analytically. For posts on a square lattice, our analytical results are in excellent quantitative agreement with previous numerical computations.
Laminar flow over a bubble mattress is expected to experience a significant reduction in friction since the individual surfaces of the bubbles are shear-free. However, if the bubbles are sufficiently curved, their protrusion into the fluid and along the flow direction can lead to an increase in friction as was recently demonstrated experimentally and computationally. We provide in this paper a simple model for this result. We consider a shear flow at low Reynolds number past a two-dimensional array of bubbles, and calculate analytically the effective slip length of the surface as function of the bubble geometry in the dilute limit. Our model is able to reproduce quantitatively the relationship between effective friction and bubble geometry obtained in numerical computations, and in particular: (a) The asymmetry in friction between convex and concave bubbles, and (b) the existence of a geometric transition from reduced to enhanced friction at a critical bubble protrusion angle.
We present a numerical study of the rheology of a two-fluid emulsion in dilute and semidilute conditions. The analysis is performed for different capillary numbers, volume fraction and viscosity ratio under the assumption of negligible inertia and zero buoyancy force. The effective viscosity of the system increases for low values of the volume fraction and decreases for higher values, with a maximum for about 20 % concentration of the disperse phase. When the dispersed fluid has lower viscosity, the normalised effective viscosity becomes smaller than 1 for high enough volume fractions. To single out the effect of droplet coalescence on the rheology of the emulsion we introduce an Eulerian force which prevents merging, effectively modelling the presence of surfactants in the system. When the coalescence is inhibited the effective viscosity is always greater than 1 and the curvature of the function representing the emulsion effective viscosity vs. the volume fraction becomes positive, resembling the behaviour of suspensions of deformable particles. The reduction of the effective viscosity in the presence of coalescence is associated to the reduction of the total surface of the disperse phase when the droplets merge, which leads to a reduction of the interface tension contribution to the total shear stress. The probability density function of the flow topology parameter shows that the flow is mostly a shear flow in the matrix phase, with regions of extensional flow when the coalescence is prohibited. The flow in the disperse phase, instead, always shows rotational components. The first normal stress difference is positive whereas the second normal difference is negative, with their ratio being constant with the volume fraction. Our results clearly show that the coalescence efficiency strongly affects the system rheology and neglecting droplet merging can lead to erroneous predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا