Do you want to publish a course? Click here

Feature relevance quantification in explainable AI: A causal problem

81   0   0.0 ( 0 )
 Added by Dominik Janzing
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We discuss promising recent contributions on quantifying feature relevance using Shapley values, where we observed some confusion on which probability distribution is the right one for dropped features. We argue that the confusion is based on not carefully distinguishing between observational and interventional conditional probabilities and try a clarification based on Pearls seminal work on causality. We conclude that unconditional rather than conditional expectations provide the right notion of dropping features in contradiction to the theoretical justification of the software package SHAP. Parts of SHAP are unaffected because unconditional expectations (which we argue to be conceptually right) are used as approximation for the conditional ones, which encouraged others to `improve SHAP in a way that we believe to be flawed.



rate research

Read More

While causal models are becoming one of the mainstays of machine learning, the problem of uncertainty quantification in causal inference remains challenging. In this paper, we study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable. As data arises from multiple sources and can vary in quality and quantity, principled uncertainty quantification becomes essential. To that end, we introduce Bayesian Interventional Mean Processes, a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space, while taking into account the uncertainty within each causal graph. To demonstrate the utility of our uncertainty estimation, we apply our method to the Causal Bayesian Optimisation task and show improvements over state-of-the-art methods.
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of models across different experimental conditions for detecting direct causal links. However, these approaches generally do not scale well with the number of explanatory variables, are difficult to extend to nonlinear relationships, and require data across different experiments. Inspired by {em Debiased} machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the direct causal parent of the response. We propose an algorithm that works for purely observational data, while also offering theoretical guarantees, including the case of partially nonlinear relationships. Requiring only one estimation for each variable, we can apply our approach even to large graphs, demonstrating significant improvements compared to established approaches.
A framework is presented to extract and understand decision-making information from a deep neural network (DNN) classifier of jet substructure tagging techniques. The general method studied is to provide expert variables that augment inputs (eXpert AUGmented variables, or XAUG variables), then apply layerwise relevance propagation (LRP) to networks both with and without XAUG variables. The XAUG variables are concatenated with the intermediate layers after network-specific operations (such as convolution or recurrence), and used in the final layers of the network. The results of comparing networks with and without the addition of XAUG variables show that XAUG variables can be used to interpret classifier behavior, increase discrimination ability when combined with low-level features, and in some cases capture the behavior of the classifier completely. The LRP technique can be used to find relevant information the network is using, and when combined with the XAUG variables, can be used to rank features, allowing one to find a reduced set of features that capture part of the network performance. In the studies presented, adding XAUG variables to low-level DNNs increased the efficiency of classifiers by as much as 30-40%. In addition to performance improvements, an approach to quantify numerical uncertainties in the training of these DNNs is presented.
Reliable treatment effect estimation from observational data depends on the availability of all confounding information. While much work has targeted treatment effect estimation from observational data, there is relatively little work in the setting of confounding variable missingness, where collecting more information on confounders is often costly or time-consuming. In this work, we frame this challenge as a problem of feature acquisition of confounding features for causal inference. Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation. We propose two acquisition strategies based on i) covariate balancing (CB), and ii) reducing statistical estimation error on observed factual outcome error (OE). We compare CB and OE on five common causal effect estimation methods, and demonstrate improved sample efficiency of OE over baseline methods under various settings. We also provide visualizations for further analysis on the difference between our proposed methods.
In machine learning applications for online product offerings and marketing strategies, there are often hundreds or thousands of features available to build such models. Feature selection is one essential method in such applications for multiple objectives: improving the prediction accuracy by eliminating irrelevant features, accelerating the model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnosis capability. However, selecting an optimal feature subset from a large feature space is considered as an NP-complete problem. The mRMR (Minimum Redundancy and Maximum Relevance) feature selection framework solves this problem by selecting the relevant features while controlling for the redundancy within the selected features. This paper describes the approach to extend, evaluate, and implement the mRMR feature selection methods for classification problem in a marketing machine learning platform at Uber that automates creation and deployment of targeting and personalization models at scale. This study first extends the existing mRMR methods by introducing a non-linear feature redundancy measure and a model-based feature relevance measure. Then an extensive empirical evaluation is performed for eight different feature selection methods, using one synthetic dataset and three real-world marketing datasets at Uber to cover different use cases. Based on the empirical results, the selected mRMR method is implemented in production for the marketing machine learning platform. A description of the production implementation is provided and an online experiment deployed through the platform is discussed.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا