No Arabic abstract
Saturns magnetospheric magnetic field, planetary radio emissions, plasma populations and magnetospheric structure are all known to be modulated at periods close to the assumed rotation period of the planetary interior. These oscillations are readily apparent despite the high degree of axi-symmetry in the internally produced magnetic field of the planet, and have different rotation periods in the northern and southern hemispheres. In this paper we study the spatial structure of (near-) planetary period magnetic field oscillations in Saturns equatorial magnetosphere. Extending previous analyses of these phenomena, we include all suitable data from the entire Cassini mission during its orbital tour of the planet, so as to be able to quantify both the amplitude and phase of these field oscillations throughout Saturns equatorial plane, to distances of 30 planetary radii. We study the structure of these field oscillations in view of both independently rotating northern and southern systems, finding spatial variations in both magnetic fields and inferred currents flowing north-south that are common to both systems. With the greatly expanded coverage of the equatorial plane achieved during the latter years of the mission, we are able to present a complete survey of dawn-dusk and day-night asymmetries in the structure of the oscillating fields and currents. We show that the general structure of the rotating currents is simpler than previously reported, and that the relatively enhanced nightside equatorial fields and currents are due in part to related periodic vertical motion of Saturns magnetotail current sheet.
For the first time, we explore the tightly coupled interior-magnetosphere system of Mercury by employing a three-dimensional ten-moment multifluid model. This novel fluid model incorporates the non-ideal effects including the Hall effect, inertia, and tensorial pressures that are critical for collisionless magnetic reconnection; therefore, it is particularly well suited for investigating $collisionless$ magnetic reconnection in Mercurys magnetotail and at the planets magnetopause. The model is able to reproduce the observed magnetic field vectors, field-aligned currents, and cross-tail current sheet asymmetry (beyond the MHD approach) and the simulation results are in good agreement with spacecraft observations. We also study the magnetospheric response of Mercury to a hypothetical extreme event with an enhanced solar wind dynamic pressure, which demonstrates the significance of induction effects resulting from the electromagnetically-coupled interior. More interestingly, plasmoids (or flux ropes) are formed in Mercurys magnetotail during the event, indicating the highly dynamic nature of Mercurys magnetosphere.
Using measurements from the Cassini spacecraft in Saturns magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturns magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturns rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.
The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturns rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturns rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the rings atmosphere, Saturns inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planets visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planets extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program.
Nowadays, astronomers want to observe gaps in exozodiacal disks to confirm the presence of exoplanets, or even make actual images of these companions. Four hundred and fifty years ago, Jean-Dominique Cassini did a similar study on a closer object: Saturn. After joining the newly created Observatoire de Paris in 1671, he discovered 4 of Saturns satellites (Iapetus, Rhea, Tethys and Dione), and also the gap in its rings. He made these discoveries observing through the best optics at the time, made in Italy by famous opticians like Giuseppe Campani or Eustachio Divini. But was he really able to observe this black line in Saturns rings? That is what a team of optical scientists from Observatoire de Paris - LESIA with the help of Onera and Institut dOptique tried to find out, analyzing the lenses used by Cassini, and still preserved in the collection of the observatory. The main difficulty was that even if the lenses have diameters between 84 and 239 mm, the focal lengths are between 6 and 50 m, more than the focal lengths of the primary mirrors of future ELTs. The analysis shows that the lenses have an exceptionally good quality, with a wavefront error of approximately 50 nm rms and 200 nm peak-to-valley, leading to Strehl ratios higher than 0.8. Taking into account the chromaticity of the glass, the wavefront quality and atmospheric turbulence, reconstructions of his observations tend to show that he was actually able to see the division named after him.
We test and compare a number of existing models predicting the location of magnetic reconnection at Earths dayside magnetopause for various solar wind conditions. We employ robust image processing techniques to determine the locations where each model predicts reconnection to occur. The predictions are then compared to the magnetic separators, the magnetic field lines separating different magnetic topologies. The predictions are tested in distinct high-resolution simulations with interplanetary magnetic field (IMF) clock angles ranging from 30 to 165 degrees in global magnetohydrodynamic simulations using the three-dimensional Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the described techniques can be generally applied to any self-consistent magnetosphere code. Additional simulations are carried out to test location model dependence on IMF strength and dipole tilt. We find that most of the models match large portions of the magnetic separators when the IMF has a southward component, with the models saying reconnection occurs where the local reconnection rate and reconnection outflow speed are maximized performing best. When the IMF has a northward component, none of the models tested faithfully map the entire magnetic separator, but the maximum magnetic shear model is the best at mapping the separator in the cusp region where reconnection has been observed. Predictions for some models with northward IMF orientations improve after accounting for plasma flow shear parallel to the reconnecting components of the magnetic fields. Implications for observations are discussed.