Do you want to publish a course? Click here

Automatically Batching Control-Intensive Programs for Modern Accelerators

50   0   0.0 ( 0 )
 Added by Alexey Radul
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a general approach to batching arbitrary computations for accelerators such as GPUs. We show orders-of-magnitude speedups using our method on the No U-Turn Sampler (NUTS), a workhorse algorithm in Bayesian statistics. The central challenge of batching NUTS and other Markov chain Monte Carlo algorithms is data-dependent control flow and recursion. We overcome this by mechanically transforming a single-example implementation into a form that explicitly tracks the current program point for each batch member, and only steps forward those in the same place. We present two different batching algorithms: a simpler, previously published one that inherits recursion from the host Python, and a more complex, novel one that implemenents recursion directly and can batch across it. We implement these batching methods as a general program transformation on Python source. Both the batching system and the NUTS implementation presented here are available as part of the popular TensorFlow Probability software package.



rate research

Read More

Batching is an essential technique to improve computation efficiency in deep learning frameworks. While batch processing for models with static feed-forward computation graphs is straightforward to implement, batching for dynamic computation graphs such as syntax trees or social network graphs is challenging due to variable computation graph structure across samples. Through simulation and analysis of a Tree-LSTM model, we show the key trade-off between graph analysis time and batching effectiveness in dynamic batching. Based on this finding, we propose a dynamic batching method as an extension to MXNet Gluons just-in-time compilation (JIT) framework. We show empirically that our method yields up to 6.25 times speed-up on a common dynamic workload, a tree-LSTM model for the semantic relatedness task.
With the rapid advancement of Big Data platforms such as Hadoop, Spark, and Dataflow, many tools are being developed that are intended to provide end users with an interactive environment for large-scale data analysis (e.g., IQmulus). However, there are challenges using these platforms. For example, developers find it difficult to use these platforms when developing interactive and reusable data analytic tools. One approach to better support interactivity and reusability is the use of microlevel modularisation for computation-intensive tasks, which splits data operations into independent, composable modules. However, modularizing data and computation-intensive tasks into independent components differs from traditional programming, e.g., when accessing large scale data, controlling data-flow among components, and structuring computation logic. In this paper, we present a case study on modularizing real world computationintensive tasks that investigates the impact of modularization on processing large scale image data. To that end, we synthesize image data-processing patterns and propose a unified modular model for the effective implementation of computation-intensive tasks on data-parallel frameworks considering reproducibility, reusability, and customization. We present various insights of using the modularity model based on our experimental results from running image processing tasks on Spark and Hadoop clusters.
Students sometimes produce code that works but that its author does not comprehend. For example, a student may apply a poorly-understood code template, stumble upon a working solution through trial and error, or plagiarize. Similarly, passing an automated functional assessment does not guarantee that the student understands their code. One way to tackle these issues is to probe students comprehension by asking them questions about their own programs. We propose an approach to automatically generate questions about student-written program code. We moreover propose a use case for such questions in the context of automatic assessment systems: after a students program passes unit tests, the system poses questions to the student about the code. We suggest that these questions can enhance assessment systems, deepen student learning by acting as self-explanation prompts, and provide a window into students program comprehension. This discussion paper sets an agenda for future technical development and empirical research on the topic.
We present the first general purpose framework for marginal maximum a posteriori estimation of probabilistic program variables. By using a series of code transformations, the evidence of any probabilistic program, and therefore of any graphical model, can be optimized with respect to an arbitrary subset of its sampled variables. To carry out this optimization, we develop the first Bayesian optimization package to directly exploit the source code of its target, leading to innovations in problem-independent hyperpriors, unbounded optimization, and implicit constraint satisfaction; delivering significant performance improvements over prominent existing packages. We present applications of our method to a number of tasks including engineering design and parameter optimization.
93 - Robert Rand 2021
The Heisenberg representation of quantum operators provides a powerful technique for reasoning about quantum circuits, albeit those restricted to the common (non-universal) Clifford set H, S and CNOT. The Gottesman-Knill theorem showed that we can use this representation to efficiently simulate Clifford circuits. We show that Gottesmans semantics for quantum programs can be treated as a type system, allowing us to efficiently characterize a common subset of quantum programs. We also show that it can be extended beyond the Clifford set to partially characterize a broad range of programs. We apply these types to reason about separable states and the superdense coding algorithm.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا