No Arabic abstract
Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the post Moores law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Waves quantum annealer and IBMs gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current quantum hardware size, and we observe results comparable to state-of-the-art solvers in terms of quality of the solution.
Combinatorial optimization on near-term quantum devices is a promising path to demonstrating quantum advantage. However, the capabilities of these devices are constrained by high noise or error rates. In this paper, we propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE). We present a large-scale numerical study, simulating circuits with up to 40 qubits and 352 parameters, that demonstrates the potential of the proposed approach. We evaluate quantum optimization heuristics on the problem of detecting multiple communities in networks, for which we introduce a novel qubit-frugal formulation. We numerically compare L-VQE with Quantum Approximate Optimization Algorithm (QAOA) and demonstrate that QAOA achieves lower approximation ratios while requiring significantly deeper circuits. We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches. Our simulation results show that L-VQE performs well under realistic hardware noise.
The prospect of using quantum computers to solve combinatorial optimization problems via the quantum approximate optimization algorithm (QAOA) has attracted considerable interest in recent years. However, a key limitation associated with QAOA is the need to classically optimize over a set of quantum circuit parameters. This classical optimization can have significant associated costs and challenges. Here, we provide an expanded description of Lyapunov control-inspired strategies for quantum optimization, as first presented in arXiv:2103.08619, that do not require any classical optimization effort. Instead, these strategies utilize feedback from qubit measurements to assign values to the quantum circuit parameters in a deterministic manner, such that the combinatorial optimization problem solution improves monotonically with the quantum circuit depth. Numerical analyses are presented that investigate the utility of these strategies towards MaxCut on weighted and unweighted 3-regular graphs, both in ideal implementations and also in the presence of measurement noise. We also discuss how how these strategies may be used to seed QAOA optimizations in order to improve performance for near-term applications, and explore connections to quantum annealing.
We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different oracles. In particular, we show how a separation oracle can be implemented using $tilde{O}(1)$ quantum queries to a membership oracle, which is an exponential quantum speed-up over the $Omega(n)$ membership queries that are needed classically. We show that a quantum computer can very efficiently compute an approximate subgradient of a convex Lipschitz function. Combining this with a simplification of recent classical work of Lee, Sidford, and Vempala gives our efficient separation oracle. This in turn implies, via a known algorithm, that $tilde{O}(n)$ quantum queries to a membership oracle suffice to implement an optimization oracle (the best known classical upper bound on the number of membership queries is quadratic). We also prove several lower bounds: $Omega(sqrt{n})$ quantum separation (or membership) queries are needed for optimization if the algorithm knows an interior point of the convex set, and $Omega(n)$ quantum separation queries are needed if it does not.
We develop a general method for incentive-based programming of hybrid quantum-classical computing systems using reinforcement learning, and apply this to solve combinatorial optimization problems on both simulated and real gate-based quantum computers. Relative to a set of randomly generated problem instances, agents trained through reinforcement learning techniques are capable of producing short quantum programs which generate high quality solutions on both types of quantum resources. We observe generalization to problems outside of the training set, as well as generalization from the simulated quantum resource to the physical quantum resource.
The advent of quantum computing processors with possibility to scale beyond experimental capacities magnifies the importance of studying their applications. Combinatorial optimization problems can be one of the promising applications of these new devices. These problems are recurrent in industrial applications and they are in general difficult for classical computing hardware. In this work, we provide a survey of the approaches to solving different types of combinatorial optimization problems, in particular quadratic unconstrained binary optimization (QUBO) problems on a gate model quantum computer. We focus mainly on four different approaches including digitizing the adiabatic quantum computing, global quantum optimization algorithms, the quantum algorithms that approximate the ground state of a general QUBO problem, and quantum sampling. We also discuss the quantum algorithms that are custom designed to solve certain types of QUBO problems.