No Arabic abstract
The advent of quantum computing processors with possibility to scale beyond experimental capacities magnifies the importance of studying their applications. Combinatorial optimization problems can be one of the promising applications of these new devices. These problems are recurrent in industrial applications and they are in general difficult for classical computing hardware. In this work, we provide a survey of the approaches to solving different types of combinatorial optimization problems, in particular quadratic unconstrained binary optimization (QUBO) problems on a gate model quantum computer. We focus mainly on four different approaches including digitizing the adiabatic quantum computing, global quantum optimization algorithms, the quantum algorithms that approximate the ground state of a general QUBO problem, and quantum sampling. We also discuss the quantum algorithms that are custom designed to solve certain types of QUBO problems.
Combinatorial optimization on near-term quantum devices is a promising path to demonstrating quantum advantage. However, the capabilities of these devices are constrained by high noise or error rates. In this paper, we propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE). We present a large-scale numerical study, simulating circuits with up to 40 qubits and 352 parameters, that demonstrates the potential of the proposed approach. We evaluate quantum optimization heuristics on the problem of detecting multiple communities in networks, for which we introduce a novel qubit-frugal formulation. We numerically compare L-VQE with Quantum Approximate Optimization Algorithm (QAOA) and demonstrate that QAOA achieves lower approximation ratios while requiring significantly deeper circuits. We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches. Our simulation results show that L-VQE performs well under realistic hardware noise.
Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the post Moores law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Waves quantum annealer and IBMs gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current quantum hardware size, and we observe results comparable to state-of-the-art solvers in terms of quality of the solution.
In the model of gate-based quantum computation, the qubits are controlled by a sequence of quantum gates. In superconducting qubit systems, these gates can be implemented by voltage pulses. The success of implementing a particular gate can be expressed by various metrics such as the average gate fidelity, the diamond distance, and the unitarity. We analyze these metrics of gate pulses for a system of two superconducting transmon qubits coupled by a resonator, a system inspired by the architecture of the IBM Quantum Experience. The metrics are obtained by numerical solution of the time-dependent Schrodinger equation of the transmon system. We find that the metrics reflect systematic errors that are most pronounced for echoed cross-resonance gates, but that none of the studied metrics can reliably predict the performance of a gate when used repeatedly in a quantum algorithm.
In this paper we present an algorithmic framework for solving a class of combinatorial optimization problems on graphs with bounded pathwidth. The problems are NP-hard in general, but solvable in linear time on this type of graphs. The problems are relevant for assessing network reliability and improving the networks performance and fault tolerance. The main technique considered in this paper is dynamic programming.
Symmetry is a unifying concept in physics. In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks. For example, states that commute with a Hamiltonian realizing a time evolution are not useful for timekeeping during that evolution, and bipartite states that are highly extendible are not strongly entangled and thus not useful for basic tasks like teleportation. Motivated by this perspective, this paper details several quantum algorithms that test the symmetry of quantum states and channels. For the case of testing Bose symmetry of a state, we show that there is a simple and efficient quantum algorithm, while the tests for other kinds of symmetry rely on the aid of a quantum prover. We prove that the acceptance probability of each algorithm is equal to the maximum symmetric fidelity of the state being tested, thus giving a firm operational meaning to these latter resource quantifiers. Special cases of the algorithms test for incoherence or separability of quantum states. We evaluate the performance of these algorithms by using the variational approach to quantum algorithms, replacing the quantum prover with a variational circuit. We also show that the maximum symmetric fidelities can be calculated by semi-definite programs, which is useful for benchmarking the performance of the quantum algorithms for sufficiently small examples. Finally, we establish various generalizations of the resource theory of asymmetry, with the upshot being that the acceptance probabilities of the algorithms are resource monotones and thus well motivated from the resource-theoretic perspective.