Do you want to publish a course? Click here

Experimental characterization of modal noise in multimode fibers for astronomical spectrometers

109   0   0.0 ( 0 )
 Added by Ernesto Oliva
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Starting from our puzzling on-sky experience with the GIANO-TNG spectrometer we set up an infrared high resolution spectrometer in our laboratory and used this instrument to characterize the modal noise generated in fibers of different types (circular and octagonal) and sizes. Our experiment includes two conventional scrambling systems for fibers: a mechanical agitator and an optical double scrambler. We find that the strength of the modal noise primarily depends on how the fiber is illuminated. It dramatically increases when the fiber is under-illuminated, either in the near field or in the far field. The modal noise is similar in circular and octagonal fibers. The Fourier spectrum of the noise decreases exponentially with frequency; i.e., the modal noise is not white but favors broad spectral features. Using the optical double scrambler has no effect on modal noise. The mechanical agitator has effects that vary between different types of fibers and input illuminations. In some cases this agitator has virtually no effect. In other cases, it mitigates the modal noise, but flattens the noise spectrum in Fourier space; i.e., the mechanical agitator preferentially filters the broad spectral features. Our results show that modal noise is frustratingly insensitive to the use of octagonal fibers and optical double scramblers; i.e., the conventional systems used to improve the performances of spectrographs fed via unevenly illuminated fibers. Fiber agitation may help in some cases, but its effect has to be verified on a case-by-case basis. More generally, our results indicate that the design of the fiber link feeding a spectrograph should be coupled with laboratory measurements that reproduce, as closely as possible, the conditions expected at the telescope



rate research

Read More

Multimode fibers (MMFs) support abundant spatial modes and involve rich spatiotemporal dynamics, yielding many promising applications. Here, we investigate the influences of the number and initial energy of high-order modes (HOMs) on the energy flow from the intermediate modes (IMs) to the fundamental mode (FM) and HOMs. It is quite surprising that random distribution of high-order modes evolves to a stationary one, indicating the asymptotic behavior of orbits in the same attraction domain. By employing the Lyapunov exponent, we prove that the threshold of the HOMs-attractor is consistent with the transition point of the energy flow which indiactes the HOMs-attracotr acts as a valve in the modal energy flow. Our results provide a new perspective to explore the nonlinear phenomena in MMFs, such as Kerr self-cleaning, and may pave the way to some potential applications, such as secure communications in MMFs.
Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resolving power of about 3000, wide spectral range (J and H bands), free spectral range of about 30 nm, high on-chip throughput of about 80% (-1dB) and low crosstalk (high contrast ratio) between adjacent on-chip wavelength channels of less than 1% (-20dB). A promising photonic technology to achieve these requirements is Arrayed Waveguide Gratings (AWGs). We have developed our first generation of AWG devices using a silica-on-silicon substrate with a very thin layer of silicon-nitride in the core of our waveguides. The waveguide bending losses are minimized by optimizing the geometry of the waveguides. Our first generation of AWG devices are designed for H band and have a resolving power of around 1500 and free spectral range of about 10 nm around a central wavelength of 1600 nm. The devices have a footprint of only 12 mm x 6 mm. They are broadband (1450-1650 nm), have a peak on-chip throughput of about 80% (-1 dB) and contrast ratio of about 1.5% (-18 dB). These results confirm the robustness of our design, fabrication and simulation methods. Currently, the devices are designed for Transverse Electric (TE) polarization and all the results are for TE mode. We are developing separate J- and H-band AWGs with higher resolving power, higher throughput and lower crosstalk over a wider free spectral range to make them better suited for astronomical applications.
95 - E. Hernandez 2021
In astronomical spectroscopy, optical fibres are abundantly used for multiplexing and decoupling the spectrograph from the telescope to provide stability in a controlled environment. However, fibres are less than perfect optical components and introduce complex effects that diminish the overall throughput, efficiency, and stability of the instrument. We present a novel numerical field propagation model that emulates the effects of modal noise, scrambling, and focal ratio degradation with a rigorous treatment of wave optics. We demonstrate that the simulation of the near- and far-field output of a fiber, injected into a ray-tracing model of the spectrograph, allows to assess performance at the detector level.
121 - S. Cavazzani , V. Zitelli 2012
In this paper we have evaluated the amount of available telescope time at four interesting sites for astronomical instrumentation. We use the GOES 12 data for the years 2008 and 2009. We use a homogeneous methodology presented in several previous papers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered), and covered. Additionally, for the clear nights, we have evaluated the amount of satellite stable nights which correspond to the amount of ground based photometric nights, and the clear nights corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico; Izana, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentine; San Antonio de Los Cobres (SAC), Argentine). We have obtained, from the two years considered, a mean amount of cloud free nights of 68.6% at Izana, 76.0% at SPM, 70.6% at Leoncito and 70.0% at SAC. We have evaluated, among the cloud free nights, an amount of stable nights of 62.6% at Izana, 69.6% at SPM, 64.9% at Leoncito, and 59.7% at SAC.
276 - W. D. Pence , R. Seaman , 2009
We compare a variety of lossless image compression methods on a large sample of astronomical images and show how the compression ratios and speeds of the algorithms are affected by the amount of noise in the images. In the ideal case where the image pixel values have a random Gaussian distribution, the equivalent number of uncompressible noise bits per pixel is given by Nbits =log2(sigma * sqrt(12)) and the lossless compression ratio is given by R = BITPIX / Nbits + K where BITPIX is the bit length of the pixel values and K is a measure of the efficiency of the compression algorithm. We perform image compression tests on a large sample of integer astronomical CCD images using the GZIP compression program and using a newer FITS tiled-image compression method that currently supports 4 compression algorithms: Rice, Hcompress, PLIO, and GZIP. Overall, the Rice compression algorithm strikes the best balance of compression and computational efficiency; it is 2--3 times faster and produces about 1.4 times greater compression than GZIP. The Rice algorithm produces 75%--90% (depending on the amount of noise in the image) as much compression as an ideal algorithm with K = 0. The image compression and uncompression utility programs used in this study (called fpack and funpack) are publicly available from the HEASARC web site. A simple command-line interface may be used to compress or uncompress any FITS image file.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا