Do you want to publish a course? Click here

Complex density wave orders and quantum phase transitions in a model of square-lattice Rydberg atom arrays

150   0   0.0 ( 0 )
 Added by Rhine Samajdar
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals interactions. Using the density-matrix renormalization group algorithm, we map out the phase diagram and obtain a rich variety of phases featuring complex density wave orderings, upon varying lattice spacing and laser detuning. While some of these phases result from the classical optimization of the van der Waals energy, we also find intrinsically quantum-ordered phases stabilized by quantum fluctuations. These phases are surrounded by novel quantum phase transitions, which we analyze by finite-size scaling numerics and Landau theories. Our work highlights Rydberg quantum simulators in higher dimensions as promising platforms to realize exotic many-body phenomena.



rate research

Read More

Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we probe coherent revivals corresponding to quantum many-body scars. Remarkably, we discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer entanglement dynamics in many-body systems and enabling potential applications in quantum information science.
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging, since such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the deterministic generation of Schrodinger cat states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.
We investigate the fate of hardcore bosons in a Harper-Hofstadter model which was experimentally realized by Aidelsburger et al. [Nature Physics 11 , 162 (2015)] at half filling of the lowest band. We discuss the stability of an emergent fractional Chern insulator (FCI) state in a finite region of the phase diagram that is separated from a superfluid state by a first-order transition when tuning the band topology following the protocol used in the experiment. Since crossing a first-order transition is unfavorable for adiabatically preparing the FCI state, we extend the model to stabilize a featureless insulating state. The transition between this phase and the topological state proves to be continuous, providing a path in parameter space along which an FCI state could be adiabatically prepared. To further corroborate this statement, we perform time-dependent DMRG calculations which demonstrate that the FCI state may indeed be reached by adiabatically tuning a simple product state.
We propose a physical realization of quantum cellular automata (QCA) using arrays of ultracold atoms excited to Rydberg states. The key ingredient is the use of programmable multifrequency couplings which generalize the Rydberg blockade and facilitation effects to a broader set of non-additive, unitary and non-unitary (dissipative) conditional interactions. Focusing on a 1D array we define a set of elementary QCA rules that generate complex and varied quantum dynamical behavior. Finally we demonstrate theoretically that Rydberg QCA is ideally suited for variational quantum optimization protocols and quantum state engineering by finding parameters that generate highly entangled states as the steady state of the quantum dynamics.
We experimentally demonstrate an original method to measure very accurately the density of a frozen Rydberg gas. It is based on the use of adiabatic transitions induced by the long-range dipole-dipole interaction in pairs of nearest neighbor Rydberg atoms by sweeping an electric field with time. The efficiency of this two-body process is experimentally tunable, depends strongly on the density of the gas and can be accurately calculated. The analysis of this efficiency leads to an accurate determination of the Rydberg gas density, and to a calibration of the Rydberg detection. Our method does not require any prior knowledge or estimation of the volume occupied by the Rydberg gas, or of the efficiency of the detection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا