Do you want to publish a course? Click here

Phase transitions and adiabatic preparation of a fractional Chern insulator in a boson cold atom model

109   0   0.0 ( 0 )
 Added by Johannes Motruk
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the fate of hardcore bosons in a Harper-Hofstadter model which was experimentally realized by Aidelsburger et al. [Nature Physics 11 , 162 (2015)] at half filling of the lowest band. We discuss the stability of an emergent fractional Chern insulator (FCI) state in a finite region of the phase diagram that is separated from a superfluid state by a first-order transition when tuning the band topology following the protocol used in the experiment. Since crossing a first-order transition is unfavorable for adiabatically preparing the FCI state, we extend the model to stabilize a featureless insulating state. The transition between this phase and the topological state proves to be continuous, providing a path in parameter space along which an FCI state could be adiabatically prepared. To further corroborate this statement, we perform time-dependent DMRG calculations which demonstrate that the FCI state may indeed be reached by adiabatically tuning a simple product state.



rate research

Read More

We present evidence of a direct, continuous quantum phase transition between a Bose superfluid and the $ u=1/2$ fractional Chern insulator in a microscopic lattice model. In the process, we develop a detailed field theoretic description of this transition in terms of the low energy vortex dynamics. The theory explicitly accounts for the structure of lattice symmetries and predicts a Landau forbidden transition that is protected by inversion. That the transition is continuous enables the quasi-adiabatic preparation of the fractional Chern insulator in non-equilibrium, quantum optical systems.
We report on the numerically exact simulation of the dissipative dynamics governed by quantum master equations that feature fractional quantum Hall states as unique steady states. In particular, for the paradigmatic Hofstadter model, we show how Laughlin states can be to good approximation prepared in a dissipative fashion from arbitrary initial states by simply pumping strongly interacting bosons into the lowest Chern band of the corresponding single-particle spectrum. While pure (up to topological degeneracy) steady states are only reached in the low-flux limit or for extended hopping range, we observe a certain robustness regarding the overlap of the steady state with fractional quantum Hall states for experimentally well-controlled flux densities. This may be seen as an encouraging step towards addressing the long-standing challenge of preparing strongly correlated topological phases in quantum simulators.
We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals interactions. Using the density-matrix renormalization group algorithm, we map out the phase diagram and obtain a rich variety of phases featuring complex density wave orderings, upon varying lattice spacing and laser detuning. While some of these phases result from the classical optimization of the van der Waals energy, we also find intrinsically quantum-ordered phases stabilized by quantum fluctuations. These phases are surrounded by novel quantum phase transitions, which we analyze by finite-size scaling numerics and Landau theories. Our work highlights Rydberg quantum simulators in higher dimensions as promising platforms to realize exotic many-body phenomena.
104 - Ruochen Ma , Yin-Chen He 2020
Motivated by the recent work of QED$_3$-Chern-Simons quantum critical points of fractional Chern insulators (Phys. Rev. X textbf{8}, 031015, (2018)), we study its non-Abelian generalizations, namely QCD$_3$-Chern-Simons quantum phase transitions of fractional Chern insulators. These phase transitions are described by Dirac fermions interacting with non-Abelian Chern-Simons gauge fields ($U(N)$, $SU(N)$, $USp(N)$, etc.). Utilizing the level-rank duality of Chern-Simons gauge theory and non-Abelian parton constructions, we discuss two types of QCD$_3$ quantum phase transitions. The first type happens between two Abelian states in different Jain sequences, as opposed to the QED3 transitions between Abelian states in the same Jain sequence. A good example is the transition between $sigma^{xy}=1/3$ state and $sigma^{xy}=-1$ state, which has $N_f=2$ Dirac fermions interacting with a $U(2)$ Chern-Simons gauge field. The second type is naturally involving non-Abelian states. For the sake of experimental feasibility, we focus on transitions of Pfaffian-like states, including the Moore-Read Pfaffian, anti-Pfaffian, particle-hole Pfaffian, etc. These quantum phase transitions could be realized in experimental systems such as fractional Chern insulators in graphene heterostructures.
117 - Gernot Schaller 2008
Many physically interesting models show a quantum phase transition when a single parameter is varied through a critical point, where the ground state and the first excited state become degenerate. When this parameter appears as a coupling constant, these models can be understood as straight-line interpolations between different Hamiltonians $H_{rm I}$ and $H_{rm F}$. For finite-size realizations however, there will usually be a finite energy gap between ground and first excited state. By slowly changing the coupling constant through the point with the minimum energy gap one thereby has an adiabatic algorithm that prepares the ground state of $H_{rm F}$ from the ground state of $H_{rm I}$. The adiabatic theorem implies that in order to obtain a good preparation fidelity the runtime $tau$ should scale with the inverse energy gap and thereby also with the system size. In addition, for open quantum systems not only non-adiabatic but also thermal excitations are likely to occur. It is shown that -- using only local Hamiltonians -- for the 1d quantum Ising model and the cluster model in a transverse field the conventional straight line path can be replaced by a series of straight-line interpolations, along which the fundamental energy gap is always greater than a constant independent on the system size. The results are of interest for adiabatic quantum computation since strong similarities between adiabatic quantum algorithms and quantum phase transitions exist.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا