Do you want to publish a course? Click here

Planar Hall driven torque in a FM/NM/FM system

136   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

An important goal of spintronics is to covert a charge current into a spin current with a controlled spin polarization that can exert torques on an adjacent magnetic layer. Here we demonstrate such torques in a two ferromagnet system. A CoNi multilayer is used as a spin current source in a sample with structure CoNi/Au/CoFeB. Spin torque ferromagnetic resonance is used to measure the torque on the CoFeB layer. The response as a function of the applied field angle and current is consistent with the symmetry expected for a torques produced by the planar Hall effect originating in CoNi. We find the strength of this effect to be comparable to that of the spin Hall effect in platinum, indicating that the planar Hall effect holds potential as a spin current source with a controllable polarization direction.



rate research

Read More

73 - C. Safranski , E. A. Montoya , 2017
Spin-orbit torques in bilayers of ferromagnetic and nonmagnetic materials hold promise for energy efficient switching of magnetization in nonvolatile magnetic memories. Previously studied spin Hall and Rashba torques originate from spin-orbit interactions within the nonmagnetic material and at the bilayer interface, respectively. Here we report a spin-orbit torque that arises from planar Hall current in the ferromagnetic material of the bilayer and acts as either positive or negative magnetic damping. This planar Hall torque exhibits unusual biaxial symmetry in the plane defined by the applied electric field and the bilayer normal. The magnitude of the planar Hall torque is similar to that of the giant spin Hall torque and is large enough to excite auto-oscillations of the ferromagnetic layer magnetization.
An intriguing property of three-dimensional (3D) topological insulator (TI) is the existence of surface states with spin-momentum locking, which offers a new frontier of exploration in spintronics. Here, we report the observation of a new type of Hall effect in a 3D TI Bi2Se3 film. The Hall resistance scales linearly with both the applied electric and magnetic fields and exhibits a {pi}/2 angle offset with respect to its longitudinal counterpart, in contrast to the usual angle offset of {pi}/4 between the linear planar Hall effect and the anisotropic magnetoresistance. This novel nonlinear planar Hall effect originates from the conversion of a nonlinear transverse spin current to a charge current due to the concerted actions of spin-momentum locking and time reversal symmetry breaking, which also exists in a wide class of non-centrosymmetric materials with a large span of magnitude. It provides a new way to characterize and utilize the nonlinear spin-to-charge conversion in a variety of topological quantum materials.
We experimentally study the interlayer interaction in a magnetic multilayer system ferromagnet/insulator/ferromagnet with different spacer thickness. We demonstrate that the sign and the magnitude of the interaction can be deduced from the FMR peak shape rather than from the FMR peak shift. The proposed technique allows studying the interlayer interaction using a single sample (without a reference sample for comparison).
We identify and investigate thermal spin transport phenomena in sputter-deposited Pt/NiFe$_2$O$_{textrm{4-x}}$ ($4geq x geq 0$) bilayers. We separate the voltage generated by the spin Seebeck effect from the anomalous Nernst effect contributions and even disentangle the intrinsic anomalous Nernst effect (ANE) in the ferromagnet (FM) from the ANE produced by the Pt that is spin polarized due to its proximity to the FM. Further, we probe the dependence of these effects on the electrical conductivity and the band gap energy of the FM film varying from nearly insulating NiFe$_2$O$_4$ to metallic Ni$_{33}$Fe$_{67}$. A proximity-induced ANE could only be identified in the metallic Pt/Ni$_{33}$Fe$_{67}$ bilayer in contrast to Pt/NiFe$_2$O$_{rm x}$ ($x>0$) samples. This is verified by the investigation of static magnetic proximity effects via x-ray resonant magnetic reflectivity.
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT) /ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90 in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا