Do you want to publish a course? Click here

Koebe conjecture and the Weyl problem for convex surfaces in hyperbolic 3-space

89   0   0.0 ( 0 )
 Added by Tianqi Wu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We prove that the Koebe circle domain conjecture is equivalent to the Weyl type problem that every complete hyperbolic surface of genus zero is isometric to the boundary of the hyperbolic convex hull of the complement of a circle domain. It provides a new way to approach the Koebes conjecture using convex geometry. Combining our result with the work of He-Schramm on the Koebe conjecture, one establishes that every simply connected non-compact polyhedral surface is discrete conformal to the complex plane or the open unit disk. The main tool we use is Schramms transboundary extremal lengths.



rate research

Read More

181 - Tarik Aougab , Priyam Patel , 2020
Given a 2-manifold, a fundamental question to ask is which groups can be realized as the isometry group of a Riemannan metric of constant curvature on the manifold. In this paper, we give a nearly complete classification of such groups for infinite-genus 2-manifolds with no planar ends. Surprisingly, we show there is an uncountable class of such 2-manifolds where every countable group can be realized as an isometry group (namely, those with self-similar end spaces). We apply this result to obtain obstructions to standard group theoretic properties for the groups of homeomorphisms, diffeomorphisms, and the mapping class groups of such 2-manifolds. For example, none of these groups satisfy the Tits Alternative; are coherent; are linear; are cyclically or linearly orderable; or are residually finite. As a second application, we give an algebraic rigidity result for mapping class groups.
A Riemann surface $X$ is said to be of emph{parabolic type} if it supports a Greens function. Equivalently, the geodesic flow on the unit tangent of $X$ is ergodic. Given a Riemann surface $X$ of arbitrary topological type and a hyperbolic pants decomposition of $X$ we obtain sufficient conditions for parabolicity of $X$ in terms of the Fenchel-Nielsen parameters of the decomposition. In particular, we initiate the study of the effect of twist parameters on parabolicity. A key ingredient in our work is the notion of textit{non standard half-collar} about a hyperbolic geodesic. We show that the modulus of such a half-collar is much larger than the modulus of a standard half-collar as the hyperbolic length of the core geodesic tends to infinity. Moreover, the modulus of the annulus obtained by gluing two non standard half-collars depends on the twist parameter, unlike in the case of standard collars. Our results are sharp in many cases. For instance, for zero-twist flute surfaces as well as half-twist flute surfaces with concave sequences of lengths our results provide a complete characterization of parabolicity in terms of the length parameters. It follows that parabolicity is equivalent to completeness in these cases. Applications to other topological types such as surfaces with infinite genus and one end (a.k.a. the infinite Loch-Ness monster), the ladder surface, Abelian covers of compact surfaces are also studied.
By work of Uhlenbeck, the largest principal curvature of any least area fiber of a hyperbolic $3$-manifold fibering over the circle is bounded below by one. We give a short argument to show that, along certain families of fibered hyperbolic $3$-manifolds, there is a uniform lower bound for the maximum principal curvatures of a least area minimal surface which is greater than one.
115 - Franc Forstneric 2020
Let $H^4$ denote the hyperbolic four-space. Given a bordered Riemann surface, $M$, we prove that every smooth conformal superminimal immersion $overline Mto H^4$ can be approximated uniformly on compacts in $M$ by proper conformal superminimal immersions $Mto H^4$. In particular, $H^4$ contains properly immersed conformal superminimal surfaces normalised by any given open Riemann surface of finite topological type without punctures. The proof uses the analysis of holomorphic Legendrian curves in the twistor space of $H^4$.
The paper contains a new proof that a complete, non-compact hyperbolic $3$-manifold $M$ with finite volume contains an immersed, closed, quasi-Fuchsian surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا