Do you want to publish a course? Click here

Proper superminimal surfaces of given conformal types in the hyperbolic four-space

116   0   0.0 ( 0 )
 Added by Franc Forstneric
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $H^4$ denote the hyperbolic four-space. Given a bordered Riemann surface, $M$, we prove that every smooth conformal superminimal immersion $overline Mto H^4$ can be approximated uniformly on compacts in $M$ by proper conformal superminimal immersions $Mto H^4$. In particular, $H^4$ contains properly immersed conformal superminimal surfaces normalised by any given open Riemann surface of finite topological type without punctures. The proof uses the analysis of holomorphic Legendrian curves in the twistor space of $H^4$.



rate research

Read More

132 - Sung-Hong Min , Keomkyo Seo 2012
Let $Sigma$ be a $k$-dimensional complete proper minimal submanifold in the Poincar{e} ball model $B^n$ of hyperbolic geometry. If we consider $Sigma$ as a subset of the unit ball $B^n$ in Euclidean space, we can measure the Euclidean volumes of the given minimal submanifold $Sigma$ and the ideal boundary $partial_infty Sigma$, say $rvol(Sigma)$ and $rvol(partial_infty Sigma)$, respectively. Using this concept, we prove an optimal linear isoperimetric inequality. We also prove that if $rvol(partial_infty Sigma) geq rvol(mathbb{S}^{k-1})$, then $Sigma$ satisfies the classical isoperimetric inequality. By proving the monotonicity theorem for such $Sigma$, we further obtain a sharp lower bound for the Euclidean volume $rvol(Sigma)$, which is an extension of Fraser and Schoens recent result cite{FS} to hyperbolic space. Moreover we introduce the M{o}bius volume of $Sigma$ in $B^n$ to prove an isoperimetric inequality via the M{o}bius volume for $Sigma$.
88 - Feng Luo , Tianqi Wu 2019
We prove that the Koebe circle domain conjecture is equivalent to the Weyl type problem that every complete hyperbolic surface of genus zero is isometric to the boundary of the hyperbolic convex hull of the complement of a circle domain. It provides a new way to approach the Koebes conjecture using convex geometry. Combining our result with the work of He-Schramm on the Koebe conjecture, one establishes that every simply connected non-compact polyhedral surface is discrete conformal to the complex plane or the open unit disk. The main tool we use is Schramms transboundary extremal lengths.
50 - Rukmini Dey , Pradip Kumar , 2016
We give a different formulation for describing maximal surfaces in Lorentz-Minkowski space, $mathbb{L}^3$, using the identification of $mathbb L^3$ with $mathbb Ctimes mathbb R$. Further we give a different proof for the singular Bjorling problem for the case of closed real analytic null curve. As an application, we show the existence of maximal surface which contains a given curve and has a special singularity.
181 - Tarik Aougab , Priyam Patel , 2020
Given a 2-manifold, a fundamental question to ask is which groups can be realized as the isometry group of a Riemannan metric of constant curvature on the manifold. In this paper, we give a nearly complete classification of such groups for infinite-genus 2-manifolds with no planar ends. Surprisingly, we show there is an uncountable class of such 2-manifolds where every countable group can be realized as an isometry group (namely, those with self-similar end spaces). We apply this result to obtain obstructions to standard group theoretic properties for the groups of homeomorphisms, diffeomorphisms, and the mapping class groups of such 2-manifolds. For example, none of these groups satisfy the Tits Alternative; are coherent; are linear; are cyclically or linearly orderable; or are residually finite. As a second application, we give an algebraic rigidity result for mapping class groups.
82 - Jeffrey Streets 2018
We recall fundamental aspects of the pluriclosed flow equation and survey various existence and convergence results, and the various analytic techniques used to establish them. Building on this, we formulate a precise conjectural description of the long time behavior of the flow on complex surfaces. This suggests an attendant geometrization conjecture which has implications for the topology of complex surfaces and the classification of generalized Kahler structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا