No Arabic abstract
We examine the properties of damped Lyman-$alpha$ absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: {sc Simba} and {sc Technicolor Dawn}. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multi-frequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly-$alpha$ forest mean transmission at $z>5$. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at $zgeq 3$, and both reproduce the observed neutral hydrogen cosmological mass density, $Omega_{rm HI}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows under-produces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an ${rm H}_2$-regulated star formation recipe includes a tail extending to $[M/H] ll -3$, lower than any DLA observed to date, owing to curtailed star formation in low-metallicity galaxies. Our results show that DLA observations play an imporant role in constraining key physical ingredients in galaxy formation models, complementing traditional ensemble statistics such as the stellar mass and star formation rate functions.
We have collected data for 69 Damped Lyman-alpha (DLA) systems, to investigate the chemical evolution of galaxies in the redshift interval 0.0 < z < 4.4. In doing that, we have adopted the most general approach used so far to correct for dust depletion. The best solution, obtained through chi^2 minimization, gives as output parameters the global DLA metallicity and the dust-to-metals ratio. Clear evolution of the metallicity vs. redshift is found (99.99% significance level), with average values going from ~1/30 solar at z~4.1 to ~3/5 solar at z~0.5. We also find that the majority of DLAs (~60%) shows dust depletion patterns which most closely resemble that of the warm halo clouds in the Milky Way, and have dust-to-metals ratios very close to warm halo clouds.
High-redshift Lyman-alpha blobs (LABs) are an enigmatic class of objects that have been the subject of numerous observational and theoretical investigations. It is of particular interest to determine the dominant power sources for the copious luminosity, as direct emission from HII regions, cooling gas, and fluorescence due to the presence of active galactic nuclei (AGN) can all contribute significantly. In this paper, we present the first theoretical model to consider all of these physical processes in an attempt to develop an evolutionary model for the origin of high-z LABs. This is achieved by combining a series of high-resolution cosmological zoom-in simulations with ionization and Lyman-alpha (Lya) radiative transfer models. We find that massive galaxies display a range of Lya luminosities and spatial extents (which strongly depend on the limiting surface brightness used) over the course of their lives, though regularly exhibit luminosities and sizes consistent with observed LABs. The model LABs are typically powered from a combination of recombination in star-forming galaxies, as well as cooling emission from gas associated with accretion. When AGN are included in the model, the fluorescence caused by AGN-driven ionization can be a significant contributor to the total Lya luminosity as well. We propose that the presence of an AGN may be predicted from the Gini coefficient of the blobs surface brightness. Within our modeled mass range, there are no obvious threshold physical properties that predict appearance of LABs, and only weak correlations of the luminosity with the physical properties of the host galaxy. This is because the emergent Lya luminosity from a system is a complex function of the gas temperature, ionization state, and Lya escape fraction.
We report evidence for an anti-correlation between spin temperature $T_s$ and metallicity [Z/H], detected at $3.6 sigma$ significance in a sample of 26 damped Lyman-$alpha$ absorbers (DLAs) at redshifts $0.09 < z < 3.45$. The anti-correlation is detected at $3 sigma$ significance in a sub-sample of 20 DLAs with measured covering factors, implying that it does not stem from low covering factors. We obtain $T_s = (-0.68 pm 0.17) times {rm [Z/H]} + (2.13 pm 0.21)$ from a linear regression analysis. Our results indicate that the high $T_s$ values found in DLAs do not arise from differences between the optical and radio sightlines, but are likely to reflect the underlying gas temperature distribution. The trend between $T_s$ and [Z/H] can be explained by the larger number of radiation pathways for gas cooling in galaxies with high metal abundances, resulting in a high cold gas fraction, and hence, a low spin temperature. Conversely, low-metallicity galaxies have fewer cooling routes, yielding a larger warm gas fraction and a high $T_s$. Most DLAs at $z>1.7$ have low metallicities, [Z/H] $< -1$, implying that the HI in high-$z$ DLAs is predominantly warm. The anti-correlation between $T_s$ and [Z/H] is consistent with the presence of a mass-metallicity relation in DLAs, suggested by the tight correlation between DLA metallicity and the kinematic widths of metal lines. Most high-$z$ DLAs are likely to arise in galaxies with low masses ($M_{rm vir} < 10^{10.5} M_odot$), low metallicities ([Z/H]$< -1$, and low cold gas fractions.
We report on a sensitive search for redshifted H$alpha$ line-emission from three high-metallicity damped Ly$alpha$ absorbers (DLAs) at $z approx 2.4$ with the Near-infrared Integral Field Spectrometer (NIFS) on the Gemini-North telescope, assisted by the ALTtitude conjugate Adaptive optics for the InfraRed (ALTAIR) system with a laser guide star. Within the NIFS field-of-view, $approx 3.22 times 2.92$ corresponding to $approx 25$ kpc $ times 23$ kpc at $z=2.4$, we detect no statistically significant line-emission at the expected redshifted H$alpha$ wavelengths. The measured root-mean-square noise fluctuations in $0.4$ apertures are $1-3times10^{-18}$ erg s$^{-1}$ cm$^{-2}$. Our analysis of simulated, compact, line-emitting sources yields stringent limits on the star-formation rates (SFRs) of the three DLAs, $< 2.2$~M$_{odot}$ yr$^{-1}$ ($3sigma$) for two absorbers, and $< 11$~M$_{odot}$ yr$^{-1}$ ($3sigma$) for the third, at all impact parameters within $approx 12.5$~kpc to the quasar sightline at the DLA redshift. For the third absorber, the SFR limit is $< 4.4$~M$_odot$ yr$^{-1}$ for locations away from the quasar sightline. These results demonstrate the potential of adaptive optics-assisted, integral field unit searches for galaxies associated with high-$z$ DLAs.
The similarity between observed velocity structures of Al III and singly ionized species in damped Lyman-alpha systems (DLAs) suggests the presence of ionized gas in the regions where most metal absorption lines are formed. A simplified model consisting of Region 1) a plane-parallel ionization bounded region illuminated by an internal radiation field, and Region 2) a neutral region with a negligible metal content is considered. We calculate photoionization equilibrium models for region 1, and constrain the ionization parameter by the observed N(Al III)/N(Si II) column density ratio. Under these conditions we find that ionization effects are important. If these effects are taken into account, the element abundance ratios in DLAs are quite consistent with those observed in Milky Way stars and in H II regions of local low-metallicity blue compact dwarf galaxies. In particular we cannot exclude the same primary N origin in both DLAs and metal-poor galaxies. No depletion of heavy elements on dust grains needs to be invoked, although our models do not exclude the presence of little depletion. Although highly simplified and relying on the strong assumption of a significantly lower metal content in region 2, our model appears to be supported by recent data on a local DLA and it is not in contradiction with the current knowledge on high redshift DLAs. If correct, it offers a clear simplification in the understanding of heavy element abundance ratios in DLAs and their comparison with the local Universe.