Do you want to publish a course? Click here

On ionization effects and abundance ratios in damped Lyman alpha systems

91   0   0.0 ( 0 )
 Added by Daniel Schaerer
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

The similarity between observed velocity structures of Al III and singly ionized species in damped Lyman-alpha systems (DLAs) suggests the presence of ionized gas in the regions where most metal absorption lines are formed. A simplified model consisting of Region 1) a plane-parallel ionization bounded region illuminated by an internal radiation field, and Region 2) a neutral region with a negligible metal content is considered. We calculate photoionization equilibrium models for region 1, and constrain the ionization parameter by the observed N(Al III)/N(Si II) column density ratio. Under these conditions we find that ionization effects are important. If these effects are taken into account, the element abundance ratios in DLAs are quite consistent with those observed in Milky Way stars and in H II regions of local low-metallicity blue compact dwarf galaxies. In particular we cannot exclude the same primary N origin in both DLAs and metal-poor galaxies. No depletion of heavy elements on dust grains needs to be invoked, although our models do not exclude the presence of little depletion. Although highly simplified and relying on the strong assumption of a significantly lower metal content in region 2, our model appears to be supported by recent data on a local DLA and it is not in contradiction with the current knowledge on high redshift DLAs. If correct, it offers a clear simplification in the understanding of heavy element abundance ratios in DLAs and their comparison with the local Universe.



rate research

Read More

The similarity between observed velocity structures of Al III and singly ionised species in damped Lyman-alpha systems (DLAs) suggests the presence of ionised gas in the regions where most metal absorption lines are formed. To explore the possible implications of ionisation effects we construct a simplified two-region model for DLAs consisting of an ionisation bounded region with an internal radiation field and a neutral region with a lower metal content. Within this framework we find that ionisation effects are important. If taken into account, the element abundance ratios in DLAs are quite consistent with those observed in Milky Way stars and in metal-poor H II regions in blue compact dwarf galaxies. In particular we cannot exclude the same primary N origin in both DLAs and metal-poor galaxies. From our models no dust depletion of heavy elements needs to be invoked; little depletion is however not excluded.
We report evidence for a bimodality in damped Ly systems (DLAs). Using [C II] 158 mu cooling rates, lc, we find a distribution with peaks at lc=10^-27.4 and 10^-26.6 ergs s^-1 H^-1 separated by a trough at lc^crit ~= lc < 10^-27.0 ergs s^-1 H^-1. We divide the sample into low cool DLAs with lc < lc^crit and high cool DLAs with lc > lc^crit and find the Kolmogorv-Smirnov probabilities that velocity width, metallicity, dust-to-gas ratio, and Si II equivalent width in the two subsamples are drawn from the same parent population are small. All these quantities are significantly larger in the high cool population, while the H I column densities are indistinguishable in the two populations. We find that heating by X-ray and FUV background radiation is insufficient to balance the cooling rates of either population. Rather, the DLA gas is heated by local radiation fields. The rare appearance of faint, extended objects in the Hubble Ultra Deep Field rules out in situ star formation as the dominant star-formation mode for the high cool population, but is compatible with in situ star formation as the dominant mode for the low cool population. Star formation in the high cool DLAs likely arises in Lyman Break galaxies. We investigate whether these properties of DLAs are analogous to the bimodal properties of nearby galaxies. Using Si II equivalent width as a mass indicator, we construct bivariate distributions of metallicity, lc, and areal SFR versus the mass indicators. Tentative evidence is found for correlations and parallel sequences, which suggest similarities between DLAs and nearby galaxies. We suggest that the transition-mass model provides a plausible scenario for the bimodality we have found. As a result, the bimodality in current galaxies may have originated in DLAs.
We have identified a metal-strong (logN(Zn+) > 13.15 or logN(Si+) > 15.95) DLA (MSDLA) population from an automated quasar (QSO) absorber search in the Sloan Digital Sky Survey Data Release 3 (SDSS-DR3) quasar sample, and find that MSDLAs comprise ~5% of the entire DLA population with z_abs > 2.2 found in QSO sightlines with r < 19.5. We have also acquired 27 Keck ESI follow-up spectra of metal-strong candidates to evaluate our automated technique and examine the MSDLA candidates at higher resolution. We demonstrate that the rest equivalent widths of strong ZnII 2026 and SiII 1808 lines in low-resolution SDSS spectra are accurate metal-strong indicators for higher-resolution spectra, and predict the observed equivalent widths and signal-to-noise ratios needed to detect certain extremely weak lines with high-resolution instruments. We investigate how the MSDLAs may affect previous studies concerning a dust-obscuration bias and the N(HI)-weighted cosmic mean metallicity <Z(z)>. Finally, we include a brief discussion of abundance ratios in our ESI sample and find that underlying mostly Type II supernovae enrichment are differential depletion effects due to dust (and in a few cases quite strong); we present here a handful of new Ti and Mn measurements, both of which are useful probes of depletion in DLAs. Future papers will present detailed examinations of particularly metal-strong DLAs from high-resolution KeckI/HIRES and VLT/UVES spectra.
The most metal-poor DLA known to date, at z = 2.61843 in the spectrum of the QSO Q0913+072, with an oxygen abundance only about 1/250 of the solar value, shows six well resolved D I Lyman series transitions in high quality echelle spectra recently obtained with the ESO VLT. We deduce a value of the deuterium abundance log (D/H) = -4.56+/-0.04 which is in good agreement with four out of the six most reliable previous determinations of this ratio in QSO absorbers. We find plausible reasons why in the other two cases the 1 sigma errors may have been underestimated by about a factor of two. The addition of this latest data point does not change significantly the mean value of the primordial abundance of deuterium, suggesting that we are now converging to a reliable measure of this quantity. We conclude that <log (D/H)_p> = -4.55+/-0.03 and Omega_b h^2 (BBN) = 0.0213+/-0.0010 (68% confidence limits). Including the latter as a prior in the analysis of the five year data of WMAP leads to a revised best-fitting value of the power-law index of primordial fluctuations n_s = 0.956+/-0.013 (1 sigma) and n_s < 0.990 with 99% confidence. Considering together the constraints provided by WMAP 5, (D/H)_p, baryon oscillations in the galaxy distribution, and distances to Type Ia supernovae, we arrive at the current best estimates Omega_b h^2 = 0.0224+/-0.0005 and n_s = 0.959+/-0.013.
We have collected data for 69 Damped Lyman-alpha (DLA) systems, to investigate the chemical evolution of galaxies in the redshift interval 0.0 < z < 4.4. In doing that, we have adopted the most general approach used so far to correct for dust depletion. The best solution, obtained through chi^2 minimization, gives as output parameters the global DLA metallicity and the dust-to-metals ratio. Clear evolution of the metallicity vs. redshift is found (99.99% significance level), with average values going from ~1/30 solar at z~4.1 to ~3/5 solar at z~0.5. We also find that the majority of DLAs (~60%) shows dust depletion patterns which most closely resemble that of the warm halo clouds in the Milky Way, and have dust-to-metals ratios very close to warm halo clouds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا