No Arabic abstract
We present a detailed account of a first-order localization transition in the Discrete Nonlinear Schrodinger Equation, where the localized phase is associated to the high energy region in parameter space. We show that, due to ensemble inequivalence, this phase is thermodynamically stable only in the microcanonical ensemble. In particular, we obtain an explicit expression of the microcanonical entropy close to the transition line, located at infinite temperature. This task is accomplished making use of large-deviation techniques, that allow us to compute, in the limit of large system size, also the subleading corrections to the microcanonical entropy. These subleading terms are crucial ingredients to account for the first-order mechanism of the transition, to compute its order parameter and to predict the existence of negative temperatures in the localized phase. All of these features can be viewed as signatures of a thermodynamic phase where the translational symmetry is broken spontaneously due to a condensation mechanism yielding energy fluctuations far away from equipartition: actually they prefer to participate in the formation of nonlinear localized excitations (breathers), typically containing a macroscopic fraction of the total energy.
The thermodynamics of the discrete nonlinear Schrodinger equation in the vicinity of infinite temperature is explicitly solved in the microcanonical ensemble by means of large-deviation techniques. A first-order phase transition between a thermalized phase and a condensed (localized) one occurs at the infinite-temperature line. Inequivalence between statistical ensembles characterizes the condensed phase, where the grand-canonical representation does not apply. The control over finite size corrections of the microcanonical partition function allows to design an experimental test of delocalized negative-temperature states in lattices of cold atoms.
We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We first give some phenomenological arguments suggesting the shape of the viscous drift, replacing the usual linear viscous damping, and its relation with the diffusion coefficient modulating the white noise term. As a second step, we implement a procedure to reconstruct the drift and the diffusion term of the LE from the time-series of the momentum of a heavy particle embedded in a large Hamiltonian system. The results of our reconstruction are in good agreement with the phenomenological arguments. Applying the method to systems with negative temperature, we can observe that also in this case there is a suitable Langevin equation, obtained with a precise protocol, able to reproduce in a proper way the statistical features of the slow variables. In other words, even in this context, systems with negative temperature do not show any pathology.
We study stochastic processes in which the trajectories are constrained so that the process realises a large deviation of the unconstrained process. In particular we consider stochastic bridges and the question of inequivalence of path ensembles between the microcanonical ensemble, in which the end points of the trajectory are constrained, and the canonical or s ensemble in which a bias or tilt is introduced into the process. We show how ensemble inequivalence can be manifested by the phenomenon of temporal condensation in which the large deviation is realised in a vanishing fraction of the duration (for long durations). For diffusion processes we find that condensation happens whenever the process is subject to a confining potential, such as for the Ornstein-Uhlenbeck process, but not in the borderline case of dry friction in which there is partial ensemble equivalence. We also discuss continuous-space, discrete-time random walks for which in the case of a heavy tailed step-size distribution it is known that the large deviation may be achieved in a single step of the walk. Finally we consider possible effects of several constraints on the process and in particular give an alternative explanation of the interaction-driven condensation in terms of constrained Brownian excursions.
In a recent paper, Dunkel and Hilbert [Nature Physics 10, 67-72 (2014)] use an entropy definition due to Gibbs to provide a consistent thermostatistics which forbids negative absolute temperatures. Here we argue that the Gibbs entropy fails to satisfy a basic requirement of thermodynamics, namely that when two bodies are in thermal equilibrium, they should be at the same temperature. The entropy definition due to Boltzmann does meet this test, and moreover in the thermodynamic limit can be shown to satisfy Dunkel and Hilberts consistency criterion. Thus, far from being forbidden, negative temperatures are inevitable, in systems with bounded energy spectra.
We present a nonrelativistic wave equation for the electron in (3+1)-dimensions which includes negative-energy eigenstates. We solve this equation for three well-known instances, reobtaining the corresponding Pauli equation (but including negative-energy eigenstates) in each case.