Do you want to publish a course? Click here

Condensation transition and ensemble inequivalence in the Discrete Nonlinear Schrodinger Equation

141   0   0.0 ( 0 )
 Added by Giacomo Gradenigo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermodynamics of the discrete nonlinear Schrodinger equation in the vicinity of infinite temperature is explicitly solved in the microcanonical ensemble by means of large-deviation techniques. A first-order phase transition between a thermalized phase and a condensed (localized) one occurs at the infinite-temperature line. Inequivalence between statistical ensembles characterizes the condensed phase, where the grand-canonical representation does not apply. The control over finite size corrections of the microcanonical partition function allows to design an experimental test of delocalized negative-temperature states in lattices of cold atoms.



rate research

Read More

We present a detailed account of a first-order localization transition in the Discrete Nonlinear Schrodinger Equation, where the localized phase is associated to the high energy region in parameter space. We show that, due to ensemble inequivalence, this phase is thermodynamically stable only in the microcanonical ensemble. In particular, we obtain an explicit expression of the microcanonical entropy close to the transition line, located at infinite temperature. This task is accomplished making use of large-deviation techniques, that allow us to compute, in the limit of large system size, also the subleading corrections to the microcanonical entropy. These subleading terms are crucial ingredients to account for the first-order mechanism of the transition, to compute its order parameter and to predict the existence of negative temperatures in the localized phase. All of these features can be viewed as signatures of a thermodynamic phase where the translational symmetry is broken spontaneously due to a condensation mechanism yielding energy fluctuations far away from equipartition: actually they prefer to participate in the formation of nonlinear localized excitations (breathers), typically containing a macroscopic fraction of the total energy.
170 - Gaoke Hu , Teng Liu , Maoxin Liu 2018
In a statistical ensemble with $M$ microstates, we introduce an $M times M$ correlation matrix with the correlations between microstates as its elements. Using eigenvectors of the correlation matrix, we can define eigen microstates of the ensemble. The normalized eigenvalue by $M$ represents the weight factor in the ensemble of the corresponding eigen microstate. In the limit $M to infty$, weight factors go to zero in the ensemble without localization of microstate. The finite limit of weight factor when $M to infty$ indicates a condensation of the corresponding eigen microstate. This indicates a phase transition with new phase characterized by the condensed eigen microstate. We propose a finite-size scaling relation of weight factors near critical point, which can be used to identify the phase transition and its universality class of general complex systems. The condensation of eigen microstate and the finite-size scaling relation of weight factors have been confirmed by the Monte Carlo data of one-dimensional and two-dimensional Ising models.
Evaporation/condensation transition of the Potts model on square lattice is numerically investigated by the Wang-Landau sampling method. Intrinsically system size dependent discrete transition between supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical entropy, and condensation ratio, and perform a finite size scaling of them to indicate clear tendency of numerical data to converge to the infinite size limit predicted by phenomenological theory for the isotherm lattice gas model.
We show that the one dimensional discrete nonlinear Schrodinger chain (DNLS) at finite temperature has three different dynamical regimes (ultra-low, low and high temperature regimes). This has been established via (i) one point macroscopic thermodynamic observables (temperature $T$ , energy density $epsilon$ and the relationship between them), (ii) emergence and disappearance of an additional almost conserved quantity (total phase difference) and (iii) classical out-of-time-ordered correlators (OTOC) and related quantities (butterfly speed and Lyapunov exponents). The crossover temperatures $T_{textit{l-ul}}$ (between low and ultra-low temperature regimes) and $T_{textit{h-l}}$ (between high and low temperature regimes) extracted from these three different approaches are consistent with each other. The analysis presented here is an important step forward towards the understanding of DNLS which is ubiquitous in many fields and has a non-separable Hamiltonian form. Our work also shows that the different methods used here can serve as important tools to identify dynamical regimes in other interacting many body systems.
We use large-scale exact diagonalization to study the quantum Ising chain in a transverse field with long-range power-law interactions decaying with exponent $alpha$. We numerically study various probes for quantum chaos and eigenstate thermalization on the level of eigenvalues and eigenstates. The level-spacing statistics yields a clear sign towards a Wigner-Dyson distribution and therefore towards quantum chaos across all values of $alpha>0$. Yet, for $alpha<1$ we find that the microcanonical entropy is nonconvex (a mark for ensemble inequivalence). We argue that this apparent discrepancy is due to the fact that the spectrum is organized in energetically separated multiplets for $alpha<1$. While quantum chaotic behaviour develops within the individual multiplets, many multiplets dont overlap and dont mix with each other for finite system sizes $N$, as we analytically and numerically argue in the paper. Our findings suggest that a small fraction of the multiplets could persist at low energies for $alphall 1$ even for large $N$, giving rise there to ensemble inequivalence. Our findings are in sharp contrast with short-range systems where quantum chaos, eigenstate thermalization and convex microcanonical entropy are typically strictly related.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا