Do you want to publish a course? Click here

MUTE: Data-Similarity Driven Multi-hot Target Encoding for Neural Network Design

116   0   0.0 ( 0 )
 Added by Mayoore Jaiswal
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Target encoding is an effective technique to deliver better performance for conventional machine learning methods, and recently, for deep neural networks as well. However, the existing target encoding approaches require significant increase in the learning capacity, thus demand higher computation power and more training data. In this paper, we present a novel and efficient target encoding scheme, MUTE to improve both generalizability and robustness of a target model by understanding the inter-class characteristics of a target dataset. By extracting the confusion level between the target classes in a dataset, MUTE strategically optimizes the Hamming distances among target encoding. Such optimized target encoding offers higher classification strength for neural network models with negligible computation overhead and without increasing the model size. When MUTE is applied to the popular image classification networks and datasets, our experimental results show that MUTE offers better generalization and defense against the noises and adversarial attacks over the existing solutions.



rate research

Read More

Inner product-based convolution has been the founding stone of convolutional neural networks (CNNs), enabling end-to-end learning of visual representation. By generalizing inner product with a bilinear matrix, we propose the neural similarity which serves as a learnable parametric similarity measure for CNNs. Neural similarity naturally generalizes the convolution and enhances flexibility. Further, we consider the neural similarity learning (NSL) in order to learn the neural similarity adaptively from training data. Specifically, we propose two different ways of learning the neural similarity: static NSL and dynamic NSL. Interestingly, dynamic neural similarity makes the CNN become a dynamic inference network. By regularizing the bilinear matrix, NSL can be viewed as learning the shape of kernel and the similarity measure simultaneously. We further justify the effectiveness of NSL with a theoretical viewpoint. Most importantly, NSL shows promising performance in visual recognition and few-shot learning, validating the superiority of NSL over the inner product-based convolution counterparts.
To address the limitations of existing magnitude-based pruning algorithms in cases where model weights or activations are of large and similar magnitude, we propose a novel perspective to discover parameter redundancy among channels and accelerate deep CNNs via channel pruning. Precisely, we argue that channels revealing similar feature information have functional overlap and that most channels within each such similarity group can be removed without compromising models representational power. After deriving an effective metric for evaluating channel similarity through probabilistic modeling, we introduce a pruning algorithm via hierarchical clustering of channels. In particular, the proposed algorithm does not rely on sparsity training techniques or complex data-driven optimization and can be directly applied to pre-trained models. Extensive experiments on benchmark datasets strongly demonstrate the superior acceleration performance of our approach over prior arts. On ImageNet, our pruned ResNet-50 with 30% FLOPs reduced outperforms the baseline model.
Structural pruning of neural network parameters reduces computation, energy, and memory transfer costs during inference. We propose a novel method that estimates the contribution of a neuron (filter) to the final loss and iteratively removes those with smaller scores. We describe two variations of our method using the first and second-order Taylor expansions to approximate a filters contribution. Both methods scale consistently across any network layer without requiring per-layer sensitivity analysis and can be applied to any kind of layer, including skip connections. For modern networks trained on ImageNet, we measured experimentally a high (>93%) correlation between the contribution computed by our methods and a reliable estimate of the true importance. Pruning with the proposed methods leads to an improvement over state-of-the-art in terms of accuracy, FLOPs, and parameter reduction. On ResNet-101, we achieve a 40% FLOPS reduction by removing 30% of the parameters, with a loss of 0.02% in the top-1 accuracy on ImageNet. Code is available at https://github.com/NVlabs/Taylor_pruning.
152 - Chao Wang , Yi Hou , 2019
Ride-hailing services are growing rapidly and becoming one of the most disruptive technologies in the transportation realm. Accurate prediction of ride-hailing trip demand not only enables cities to better understand peoples activity patterns, but also helps ride-hailing companies and drivers make informed decisions to reduce deadheading vehicle miles traveled, traffic congestion, and energy consumption. In this study, a convolutional neural network (CNN)-based deep learning model is proposed for multi-step ride-hailing demand prediction using the trip request data in Chengdu, China, offered by DiDi Chuxing. The CNN model is capable of accurately predicting the ride-hailing pick-up demand at each 1-km by 1-km zone in the city of Chengdu for every 10 minutes. Compared with another deep learning model based on long short-term memory, the CNN model is 30% faster for the training and predicting process. The proposed model can also be easily extended to make multi-step predictions, which would benefit the on-demand shared autonomous vehicles applications and fleet operators in terms of supply-demand rebalancing. The prediction error attenuation analysis shows that the accuracy stays acceptable as the model predicts more steps.
Quantizing large Neural Networks (NN) while maintaining the performance is highly desirable for resource-limited devices due to reduced memory and time complexity. It is usually formulated as a constrained optimization problem and optimized via a modified version of gradient descent. In this work, by interpreting the continuous parameters (unconstrained) as the dual of the quantized ones, we introduce a Mirror Descent (MD) framework for NN quantization. Specifically, we provide conditions on the projections (i.e., mapping from continuous to quantized ones) which would enable us to derive valid mirror maps and in turn the respective MD updates. Furthermore, we present a numerically stable implementation of MD that requires storing an additional set of auxiliary variables (unconstrained), and show that it is strikingly analogous to the Straight Through Estimator (STE) based method which is typically viewed as a trick to avoid vanishing gradients issue. Our experiments on CIFAR-10/100, TinyImageNet, and ImageNet classification datasets with VGG-16, ResNet-18, and MobileNetV2 architectures show that our MD variants obtain quantized networks with state-of-the-art performance. Code is available at https://github.com/kartikgupta-at-anu/md-bnn.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا