Do you want to publish a course? Click here

Dirichlet-Poincar{e} profiles of graphs and groups

133   0   0.0 ( 0 )
 Added by David Hume
 Publication date 2019
  fields
and research's language is English
 Authors David Hume




Ask ChatGPT about the research

We define Poincar{e} profiles of Dirichlet type for graphs of bounded degree, in analogy with the Poincar{e} profiles (of Neumann type) defined in [HMT19]. The obvious first definition yields nothing of interest, but an alternative definition yields a spectrum of profiles which are quasi-isometry invariants and monotone with respect to subgroup inclusion. Moreover, in the extremal cases $p=1$ and $p=infty$, they detect the Fo lner function and the growth function respectively.



rate research

Read More

We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim{a}r. In this paper we focus on properties of the Poincar{e} profiles of groups with polynomial growth, and of hyperbolic spaces, where we deduce a connection between these profiles and conformal dimension. As applications, we use these invariants to show the non-existence of coarse embeddings in a variety of examples.
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having cut-points in their asymptotic cones. By Olshanskii-Osin-Sapir, that property is weaker than the property of having Morse (rank 1) quasi-geodesics. Using our characterization of Morse quasi-geodesics, we give a new proof of the theorem of Farb-Kaimanovich-Masur that states that mapping class groups cannot contain copies of irreducible lattices in semi-simple Lie groups of higher ranks. It also gives a generalization of the result of Birman-Lubotzky-McCarthy about solvable subgroups of mapping class groups not covered by the Tits alternative of Ivanov and McCarthy. We show that any group acting acylindrically on a simplicial tree or a locally compact hyperbolic graph always has many periodic Morse quasi-geodesics (i.e. Morse elements), so its divergence functions are never linear. We also show that the same result holds in many cases when the hyperbolic graph satisfies Bowditchs properties that are weaker than local compactness. This gives a new proof of Behrstocks result that every pseudo-Anosov element in a mapping class group is Morse. On the other hand, we conjecture that lattices in semi-simple Lie groups of higher rank always have linear divergence. We prove it in the case when the $mathbb{Q}$-rank is 1 and when the lattice is $SL_n(mathcal{O}_S)$ where $nge 3$, $S$ is a finite set of valuations of a number field $K$ including all infinite valuations, and $mathcal{O}_S$ is the corresponding ring of $S$-integers.
Poincare profiles are a family of analytically defined coarse invariants, which can be used as obstructions to the existence of coarse embeddings between metric spaces. In this paper we calculate the Poincare profiles of all connected unimodular Lie groups, Baumslag-Solitar groups and Thurston geometries, demonstrating two substantially different types of behaviour. In the case of Lie groups, we obtain a dichotomy which extends both the dichotomy separating rank one and higher rank semisimple Lie groups and the dichotomy separating connected solvable unimodular Lie groups of polynomial and exponential growth. We provide equivalent algebraic, quasi-isometric and coarse geometric formulations of this dichotomy. Our results have many consequences for coarse embeddings, for instance we deduce that for groups of the form $Ntimes S$, where $N$ is a connected nilpotent Lie group, and $S$ is a simple Lie group of real rank 1, both the growth exponent of $N$, and the Ahlfors-regular conformal dimension of $S$ are non-decreasing under coarse embeddings. These results are new even in the quasi-isometric setting and give obstructions to quasi-isometric embeddings which in many cases are stronger than those previously obtained by Buyalo-Schroeder.
257 - Murray Elder , Adam Piggott 2020
We prove that a group is presented by finite convergent length-reducing rewriting systems where each rule has left-hand side of length 3 if and only if the group is plain. Our proof goes via a new result concerning properties of embedded circuits in geodetic graphs, which may be of independent interest in graph theory.
We prove that a random group in the triangular density model has, for density larger than 1/3, fixed point properties for actions on $L^p$-spaces (affine isometric, and more generally $(2-2epsilon)^{1/2p}$-uniformly Lipschitz) with $p$ varying in an interval increasing with the set of generators. In the same model, we establish a double inequality between the maximal $p$ for which $L^p$-fixed point properties hold and the conformal dimension of the boundary. In the Gromov density model, we prove that for every $p_0 in [2, infty)$ for a sufficiently large number of generators and for any density larger than 1/3, a random group satisfies the fixed point property for affine actions on $L^p$-spaces that are $(2-2epsilon)^{1/2p}$-uniformly Lipschitz, and this for every $pin [2,p_0]$. To accomplish these goals we find new bounds on the first eigenvalue of the p-Laplacian on random graphs, using methods adapted from Kahn and Szemeredis approach to the 2-Laplacian. These in turn lead to fixed point properties using arguments of Bourdon and Gromov, which extend to $L^p$-spaces previous results for Kazhdans Property (T) established by Zuk and Ballmann-Swiatkowski.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا