No Arabic abstract
Our Galaxy is known to contain a central boxy/peanut-shaped bulge, yet the importance of a classical, pressure-supported component within the central part of the Milky Way is still being debated. It should be most visible at low metallicity, a regime that has not yet been studied in detail. Using metallicity-sensitive narrow-band photometry, the Pristine Inner Galaxy Survey (PIGS) has collected a large sample of metal-poor ([Fe/H] < -1.0) stars in the inner Galaxy to address this open question. We use PIGS to trace the metal-poor inner Galaxy kinematics as function of metallicity for the first time. We find that the rotational signal decreases with decreasing [Fe/H], until it becomes negligible for the most metal-poor stars. Additionally, the velocity dispersion increases with decreasing metallicity for -3.0 < [Fe/H] < -0.5, with a gradient of -44 $pm$ 4 km$,$s$^{-1},$dex$^{-1}$. These observations may signal a transition between Galactic components of different metallicities and kinematics, a different mapping onto the boxy/peanut-shaped bulge for former disk stars of different metallicities and/or the secular dynamical and gravitational influence of the bar on the pressure-supported component. Our results provide strong constraints on models that attempt to explain the properties of the inner Galaxy.
The most metal-deficient stars hold important clues about the early build-up and chemical evolution of the Milky Way, and carbon-enhanced metal-poor (CEMP) stars are of special interest. However, little is known about CEMP stars in the Galactic bulge. In this paper, we use the large spectroscopic sample of metal-poor stars from the Pristine Inner Galaxy Survey (PIGS) to identify CEMP stars ([C/Fe] > +0.7) in the bulge region and to derive a CEMP fraction. We identify 96 new CEMP stars in the inner Galaxy, of which 62 are very metal-poor ([Fe/H] < -2.0); this is more than a ten-fold increase compared to the seven previously known bulge CEMP stars. The cumulative fraction of CEMP stars in PIGS is $42^{,+14,}_{,-13} %$ for stars with [Fe/H] < -3.0, and decreases to $16^{,+3,}_{,-3} %$ for [Fe/H] < -2.5 and $5.7^{,+0.6,}_{,-0.5} %$ for [Fe/H] < -2.0. The PIGS inner Galaxy CEMP fraction for [Fe/H] < -3.0 is consistent with the halo fraction found in the literature, but at higher metallicities the PIGS fraction is substantially lower. While this can partly be attributed to a photometric selection bias, such bias is unlikely to fully explain the low CEMP fraction at higher metallicities. Considering the typical carbon excesses and metallicity ranges for halo CEMP-s and CEMP-no stars, our results point to a possible deficiency of both CEMP-s and CEMP-no stars (especially the more metal-rich) in the inner Galaxy. The former is potentially related to a difference in the binary fraction, whereas the latter may be the result of a fast chemical enrichment in the early building blocks of the inner Galaxy.
Metal-poor stars are important tools for tracing the early history of the Milky Way, and for learning about the first generations of stars. Simulations suggest that the oldest metal-poor stars are to be found in the inner Galaxy. Typical bulge surveys, however, lack low metallicity ([Fe/H] < -1.0) stars because the inner Galaxy is predominantly metal-rich. The aim of the Pristine Inner Galaxy Survey (PIGS) is to study the metal-poor and very metal-poor (VMP, [Fe/H] < -2.0) stars in this region. In PIGS, metal-poor targets for spectroscopic follow-up are selected from metallicity-sensitive CaHK photometry from the CFHT. This work presents the ~250 deg^2 photometric survey as well as intermediate-resolution spectroscopic follow-up observations for ~8000 stars using AAOmega on the AAT. The spectra are analysed using two independent tools: ULySS with an empirical spectral library, and FERRE with a library of synthetic spectra. The comparison between the two methods enables a robust determination of the stellar parameters and their uncertainties. We present a sample of 1300 VMP stars -- the largest sample of VMP stars in the inner Galaxy to date. Additionally, our spectroscopic dataset includes ~1700 horizontal branch stars, which are useful metal-poor standard candles. We furthermore show that PIGS photometry selects VMP stars with unprecedented efficiency: 86%/80% (lower/higher extinction) of the best candidates satisfy [Fe/H] < -2.0, as do 80%/63% of a larger, less strictly selected sample. We discuss future applications of this unique dataset that will further our understanding of the chemical and dynamical evolution of the innermost regions of our Galaxy.
Cosmological models predict the oldest stars in the Galaxy should be found closest to the centre of the potential well, in the bulge. The EMBLA Survey successfully searched for these old, metal-poor stars by making use of the distinctive SkyMapper photometric filters to discover candidate metal-poor stars in the bulge. Their metal-poor nature was then confirmed using the AAOmega spectrograph on the AAT. Here we present an abundance analysis of 10 bulge stars with -2.8<[Fe/H]<-1.7 from MIKE/Magellan observations, in total determining the abundances of 22 elements. Combining these results with our previous high-resolution data taken as part of the Gaia-ESO Survey, we have started to put together a picture of the chemical and kinematic nature of the most metal-poor stars in the bulge. The currently available kinematic data is consistent with the stars belonging to the bulge, although more accurate measurements are needed to constrain the stars orbits. The chemistry of these bulge stars deviates from that found in halo stars of the same metallicity. Two notable differences are the absence of carbon-enhanced metal-poor bulge stars, and the alpha-element abundances exhibit a large intrinsic scatter and include stars which are underabundant in these typically enhanced elements.
We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H & K lines and conducted in the northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope (CFHT). This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterise the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1,000 deg2 in the Galactic halo ranging from b~30 to 78 and covers many known stellar substructures. We demonstrate that, for SDSS stellar objects, we can calibrate the photometry at the 0.02-magnitude level. The comparison with existing spectroscopic metallicities from SDSS/SEGUE and LAMOST shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ~0.2 dex from [Fe/H]=-0.5 down to the extremely metal-poor regime ([Fe/H]<-3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE<-3.0 stars among [Fe/H]Pristine<-3.0 selected stars is 24% and 85% of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H]<-4.0, which can teach us valuable lessons about the early Universe.
Chemistry and kinematic studies can determine the origins of stellar population across the Milky Way. The metallicity distribution function of the bulge indicates that it comprises multiple populations, the more metal-poor end of which is particularly poorly understood. It is currently unknown if metal-poor bulge stars ([Fe/H] $<$ -1 dex) are part of the stellar halo in the inner most region, or a distinct bulge population or a combination of these. Cosmological simulations also indicate that the metal-poor bulge stars may be the oldest stars in the Galaxy. In this study, we successfully target metal-poor bulge stars selected using SkyMapper photometry. We determine the stellar parameters of 26 stars and their elemental abundances for 22 elements using R$sim$ 47,000 VLT/UVES spectra and contrast their elemental properties with that of other Galactic stellar populations. We find that the elemental abundances we derive for our metal-poor bulge stars have much lower overall scatter than typically found in the halo. This indicates that these stars may be a distinct population confined to the bulge. If these stars are, alternatively, part of the inner-most distribution of the halo, this indicates that the halo is more chemically homogeneous at small Galactic radii than at large radii. We also find two stars whose chemistry is consistent with second-generation globular cluster stars. This paper is the first part of the Chemical Origins of Metal-poor Bulge Stars (COMBS) survey that will chemo-dynamically characterize the metal-poor bulge population.